Buyback Auctions for Fisheries Management

Guilherme de Freitas, OpenX

Ted Groves, UCSD

John Ledyard, Caltech

Brian Merlob, Caltech

Background

- Many, if not most, national and international fisheries are either being overfished or are subject to overfishing.
 - Especially those fisheries still operating under a regime of <u>Open Access</u>

A key cause of overfishing is excess capacity "too many boats chasing too few fish"

Excess capacity results from

- Declining fish stocks from lack of harvest controls
- Technological progress that increases catch per unit effort
- Increasing returns to vessel size
- National industrial policy to subsidize fishing and the construction of fishing vessels

Buyback programs

- Buybacks are used to remove excess capacity in fisheries and to facilitate the establishment of a RBM regime.
- Buybacks have often come at a very high cost.
 - Mostly in the form of government subsidies to buy out excess capacity.
 - These subsidies may even have exceeded the full gain in social surplus realized from eliminating the excess capacity.

The Problem

- Goals
 - Efficiency:
 - Remove the highest cost or least efficient vessel capacity from the industry.
 - Self-financed:
 - No outside financing
 - Voluntary:
 - All boats, winners and losers, should be better off after the buyback than they were before.
- Environment: capability and cost of fishing
 - Private value: individual talents, etc.
 - Common value: size of stock after contraction

General Theory

- There do not exist dominant strategy incentive compatible mechanisms which are efficient, self-financing and voluntary.
 - Groves, Hurwicz/Walker, Green/Laffont
- With independent values, there do exist Bayesian incentive compatible mechanisms which are efficient and selffinancing.
 - D'Aspremont/Gerard-Varet, Arrow
- With interdependent values, there exist BIC mechanisms which are efficient, voluntary and extract full surplus.
 - Cremer/McLean

Buyback Auction Proposal

- Second price auction with rebate.
 - Individual boat capacities are common knowledge.
 - A desired capacity level, K*, is chosen.
 - Boats each submit a per-unit capacity bid.
 - Bids are accepted from high to low and until K* is reached. (Partial acceptance = full acceptance)
 - The per capacity price, P*, is the highest rejected bid.
 - Winners pay P* times their capacity.
 - The total of all payments is redistributed to ALL bidders.
 - In proportion to capacity
- Could also be run as a clock (ascending bid) auction.

Auction Theory for 2nd price auction with rebate

- Not DSIC
 - If i is highest loser then i can increase their own rebate.
- If independent values and symmetric equilibrium, then Bayes equilibrium is efficient and self-financing.
 - Bids are increasing in private value.
- A sufficient condition for voluntary participation is that the rebate to a boat is larger than its pre-auction profits.
 - Roughly, this will be true if the total profits of the fishery after the contraction are larger than the fishery total profits before the auction.
- <u>But</u>, if interdependent values then self-financing but not necessarily efficient.
 - Optimism about stocks can overwhelm private capabilities.
 - Goeree and Offerman provide experimental evidence for 1st price auctions.

Behavioral Theory

Probability of being 1st rejected is small.

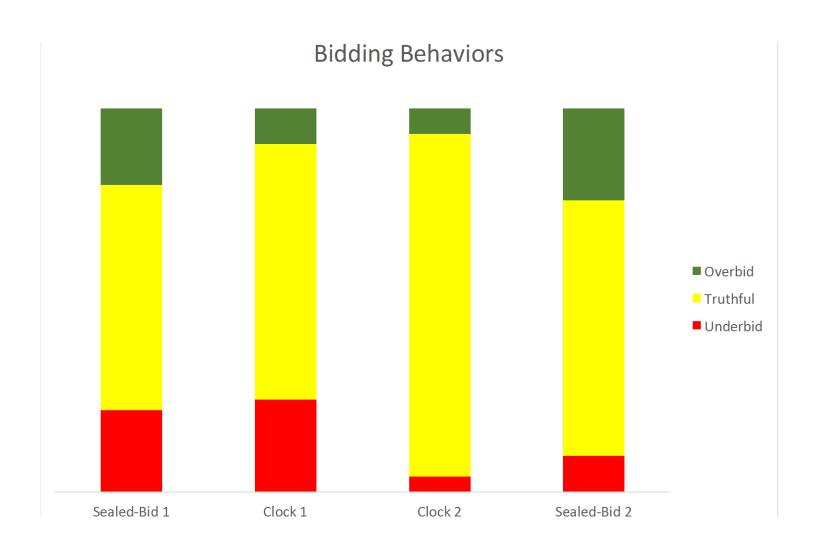
 Therefore, bidding your estimated value is "good enough"

 Empirical question: will participants bid "honestly"?

Experiment: Auction Designs

Sealed bid:

- Each of N bidders submits a bid without knowing the others' bids.
- The highest K bids win and pay a price equal to the 1st rejected bid.
 - Ties broken by first in.
- The proceeds are distributed proportionately to everyone.


Clock auction:

- Price increases by 5 each x seconds.
- Bidders must choose to stay in any round. If no choice then drop out (with no re-entry).
- Auction stops when remaining number is less than or equal to K.
 - If too many drop in last round, then winners chosen randomly from that group.
- The proceeds are distributed proportionately to everyone.

Experiment: Parameters


- 20 subjects, 4 win
- 5 sealed bid, 10 clock, 5 sealed bid 4 win
- Values randomly drawn
 - Private values:
 - v in [50,550] then V in [v-50,v+50].
 - Signal = V, Value = V
 - Private and common values, tight information:
 - v in [50, 550], V in [v-50,v+50],
 - c in [750,2550], C in [v-50,v+50].
 - Signal = (V,C) , Value = V+c
 - Private and common, <u>loose information</u>:
 - v in [50, 550], V in [v-50,v+50],
 - c in [750,2550], C in [v-150,v+150].
 - Signal = (V,C) , Value = V+c
- This is all common knowledge.

Experiment: Results

Experiments: Results

Efficiency = (subject payoffs - random)/(max possible - random)

Lessons learned

- With independent values, it is definitely possible to design self-financing, highly efficient buyback auctions with voluntary participation.
- With a common value, uncertainty about the common value lowers efficiency.
 - Making public all information about the stocks expected after contraction, will increase the efficiency of a buy-back auction for fishery management.
- Both designs, sealed bid and clock, perform about the same.

Questions?

Experiments: Results

Efficiency = (subject payoffs – random)/(max possible – random)

session	First	Second	2 nd w/o
			worst case
Sealed bid	86	75	90
Clock	94	76	94
Sealed bid	95	89	94

- Sealed bid and clock both perform well.
- Some learning occurs with the clock.
- Efficiencies are higher after learning.