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Abstract

A defining feature of culture is similarity in the manner in which information

about the world is interpreted. This makes it easier to extract information from the

beliefs of those within one’s own group. But this information may be of low quality

if better informed sources lie elsewhere. Furthermore, observing individuals outside

one’s group deepens our understanding not only of those individuals, but also of

their culture. We model this process, using unobservable, heterogeneous priors to

represent fundamental belief differences across individuals; these priors are corre-

lated within but not across groups. We characterize long run communication patterns

as follows. When uncertainty about the priors is low, there is a merging of cultures

and individuals seek information wherever it is most precise. Otherwise, extreme

homophily arises with positive probability, and with certainty when priors are highly

correlated within groups. At moderate levels of correlation, individuals in each group

can be partitioned into two categories: some individuals exhibit extreme homophily,

rarely if ever stepping outside group boundaries, while others exhibit baseline ho-

mophily and seek information wherever it is most precise. The degree of homophily

can vary non-monotonically with the level of correlation in priors, and small groups

can exhibit heterophily at intermediate levels of correlation.
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1 Introduction

A defining feature of culture is similarity in the manner in which information about the
world is interpreted. Two individuals who share a common culture—defined by ethnicity,
religion, or even politics—will tend to have correlated mental models of the world that
affect the way they process information. We call such mental models perspectives. Corre-
lated perspectives facilitate communication, since it is easier to extract the informational
content of a statement when the listener has a better understanding of the speaker’s frame
of reference. In seeking information, therefore, people will often turn to those whose per-
spectives they understand. This is a force for informational homophily.

But no single group has a monopoly on information, and informational homophily
therefore comes at a price. Those who are willing to seek information from beyond
the boundaries of their own group will have access to a richer information pool, even
if this information is sometimes harder to extract. This is a force against informational
homophily.

The trade-off between these two forces changes over time, based on an individual’s
observational history. Previously observed sources of information become better under-
stood and hence more likely to be consulted again. But the degree to which an indi-
vidual’s understanding of another deepens through observation depends on how well-
informed the observer herself happens to be in the period of observation. This has a
symmetry-breaking effect, leading to divergence over time in the behavior of initially
identical individuals. Furthermore, those who repeatedly observe individuals outside
their own group learn not only about the perspectives of their targets, but also about the
groups to which those targets belong—learning about a person teaches us both about the
person and about their culture. As a consequence, such individuals become more likely
to step across group boundaries when seeking information in the future.

We model this process, using unobservable, heterogeneous priors to represent per-
spectives. There are two social groups, and priors are correlated within but not across
groups. That is, individuals initially have more precise beliefs about the perspectives of
those within their culture than those outside it. There is a sequence of periods, and in each
period there is a state of the world about which individuals would like to have precise
beliefs. We call these states issues. In each period, each individual receives an informative
private signal about the current issue. The precision of these signals varies stochastically
across individuals and over time, and those with more precise signals in a given period
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are said to have higher expertise on that period’s issue. We assume that expertise is pub-
licly observable. In each period, each person selects a target individual and observes the
target’s posterior belief about the current issue; we call this posterior the target’s opinion.
The opinion is informative about the current issue, the target’s perspective, and the per-
spectives of all others who belong to the target’s group. The observer accordingly updates
her beliefs about the current state, and about the perspectives of others in the population.

Within this framework, culture affects communication through two channels. First,
initially, each individual learns something about the perspectives of others in her group
based on knowledge of her own perspective. This creates a bias towards homophily in
the first period of observation. Second, there is ongoing and indirect learning, based on
inferences from observed opinions, about the culture of each chosen target. This indirect
learning plays an important role in shaping long run communication structures.

We show that when initial uncertainty about the perspectives of those outside one’s
group is small relative to the range of possible expertise, cultures merge in the long run:
all individuals eventually seek information from wherever it is most precise and group
boundaries effectively dissolve. When initial uncertainty about perspectives is large,
however, an extreme form of homophily—involving homogeneity and insularity in ob-
servational patterns—emerges with positive probability at all correlation levels.

We obtain a lower bound on the probability of this event, and show that extreme
homophily arises with high probability in large groups—or more generally in groups
where one is likely to find very well-informed individuals.

Extreme homophily is possible at all levels of correlation, but happens with certainty
when correlation is sufficiently high (and initial beliefs about perspectives sufficiently un-
certain). At lower levels of correlation, heterogeneity in behavior both within and across
groups can arise, even if individuals in each group are identical at the outset. Neverthe-
less, observational patterns exhibit considerable structure. Under moderately high levels
of correlation, individuals in each group can be partitioned into two categories. One of
these exhibits considerable homophily, rarely if ever stepping outside group boundaries,
while the other is unbiased and seeks information wherever it is most precise.

This bimodality in observational choices is a key testable prediction of the model, and
arises because of indirect learning. If an individual observes some members of another
group repeatedly, their perspectives will eventually be learned with high precision. This
provides considerable information about those in the other group who have not been
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observed, making it likely that they too will be consulted when endowed with sufficiently
high expertise. And this means that their perspectives too will be eventually learned. This
gives rise to a tipping phenomenon—those who step outside group boundaries often in
early periods cease to exhibit own-group bias, while others remain parochial and insular.

There is a limit to power of indirect learning when correlation in perspectives is low,
and heterogeneity in perspectives within groups is accordingly considerable. In this case
a form of opinion leadership arises with high probability. We obtain a stochastic upper
bound on the number of individuals one observes in the long run, and show that this
number is likely to be small. That is, in the long run, each individual has a small set
of “long-run experts” and targets the best-informed within this set, even when there are
better informed individuals outside it.

In addition, we show using a family of examples that the extent of homophily exhib-
ited by a group can vary non-monotonically with the degree of correlation in perspectives,
reaching its lowest values when this correlation is neither too low nor too high. This too is
a consequence of indirect learning. When correlation is low, an individual is initially more
likely to step outside her group when seeking information, but what she learns about her
target tells her relatively little about the target’s culture. As correlation rises, one learns
more about a group from observing a single member, and this can reduce the likelihood
of homophily in the long run. In fact, we show that small groups can exhibit heterophily at
certain intermediate levels of correlation in perspectives. This too is consistent with the
available empirical evidence.

2 Related Literature

The idea that culture affects cognition has been explored extensively in anthropology,
social psychology, and law. Kahan and Braman (2006), building on prior work by Dou-
glas and Wildavsky (1982), argue that “were indeterminacy or inaccessibility of scientific
knowledge the source of public disagreement, we would expect beliefs on discrete issues
to be uncorrelated with each other.” And yet, on questions such as the effects on crime of
gun control, the effects on health of abortion, and the effects on the climate of fossil fuel
combustion, there is a high degree of correlation in opinion: “factual beliefs on these and
many other seemingly unrelated issues do cohere.” Their proposed explanation relies on
the concept of cultural cognition:
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Essentially, cultural commitments are prior to factual beliefs on highly charged
political issues. Culture is prior to facts, moreover, not just in the evaluative
sense that citizens might care more about how gun control, the death penalty,
environmental regulation and the like cohere with their cultural values than
they care about the consequences of those policies. Rather, culture is prior
to facts in the cognitive sense that what citizens believe about the empirical
consequences of those policies derives from their cultural worldviews.

Along similar lines, cultural consensus theory is based on the premise that individuals
within a culture have correlated beliefs, centered around some representative or consen-
sus belief about any particular issue (Romney et al., 1986; Batchelder and Anders, 2012).
This consensus need not correspond to any notion of ground truth, and idiosyncratic
differences in cultural competence result in heterogeneity of beliefs within groups. The
theory allows for the joint estimation of both consensus beliefs and individual levels of
cultural competence using survey data. Our model has a similar flavor, with imperfectly
correlated prior beliefs within groups, and uncorrelated beliefs across groups. But we
are also concerned with beliefs about these prior beliefs, and these evolve over time as
individuals receive information about the world both directly from signals and indirectly
through observing the opinions of selected others.

We examine these questions using a framework previously developed in Sethi and
Yildiz (2012, 2016), where heterogeneous priors represent fundamental belief differences
and signals of varying precision represent information. Although priors are initially un-
observed, they are drawn from a commonly known distribution, so individuals can rea-
son and update their beliefs about these as time unfolds and information is received.
In Sethi and Yildiz (2012) we focused on sequential public belief announcements about a
state as in Geanakoplos and Polemarchakis (1982), and identified conditions under which
distributed information is fully aggregated. In Sethi and Yildiz (2016) we studied the en-
dogenous formation of information networks in a population with independent priors,
private posteriors, and a sequence of states.

In the present work, we build on this latter paper by allowing for distinct identity
groups, with a particular correlation structure on the distribution from which priors are
drawn. Although we use techniques developed previously, the questions explored and
the economic insights obtained are quite different. In Sethi and Yildiz (2016), opinion
leadership plays a prominent role, and one of the main findings is that expert sets tend to
be small. In contrast, our main concern here is with homophily, and indirect learning can
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lead to large expert sets and bimodal observational patterns when correlation in perspec-
tives is sufficiently high. (Our earlier result on small expert sets generalizes to the current
setup when correlation is low.)

In related and complementary work, Liang and Mu (2018) have examined a model
of learning from multiple sources with correlated biases or confounds. Agents in their
model learn about a single state through repeated observation over time, rather than a
sequence of states as we consider here. But what their work shares with ours is the idea
that learning about a state also teaches us about the source, as well as other sources with
correlated confounds. This can give rise to learning traps in their model, just as it gives
rise to homophily and within-group bimodality in ours.

Lazarsfeld and Merton (1954) are credited with coining the term homophily, and as-
sociating it with the proverb “birds of a feather flock together” (McPherson et al., 2001).
Homophily can arise along multiple dimensions of affiliation, and prior theoretical work
has focused on social interactions and friendship. For instance, Currarini et al. (2009) have
developed a model in which homophily arises through a process of costly search, when
people have a preference for own-group social affiliates. Those in larger groups have
greater incentives to search, since they encounter own-group members more frequently.
This gives rise to a friendship gradient, with larger groups having more connections on
average. Currarini et al. (2009) also provide empirical evidence for heterophily in small
groups using data from the National Longitudinal Survey of Adolescent Health.1 Such
heterophily arises endogenously in our model for intermediate values of correlation in
perspectives.

Taking a different approach, Kets and Sandroni (2015) have examined the role of
strategic uncertainty in generating homophily. Individuals in their framework are char-
acterized by an impulse to play a particular action in a coordination game, and these
impulses are correlated within but not across groups. Each player finds it rational to fol-
low her impulse when interacting with members of her own group, since she expects her
counterpart to have the same impulse with high likelihood, and to follow it in equilib-
rium. This reduces strategic uncertainty and makes interactions with own-group mem-
bers more desirable. Cultural similarity in their work serves as a mechanism for equilib-
rium selection rather than effective information extraction.

1See, especially, Figure 2 in their paper, which shows that heterophily is quite common in groups that
constitute a small share of the overall school population.
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Gentzkow and Shapiro (2011) have examined informational homophily empirically,
in the context of ideological identity (conservative and liberal) in the United States. They
find that ideological homophily in access to online news sources is greater than that in
access to offline news, though considerably smaller than that in face-to-face interactions
in neighborhoods, workplaces and voluntary associations. Here news sources are them-
selves are placed on an ideological spectrum based on the distribution of their users across
political identity groups.

The idea that individuals can extract information more easily from those with whom
they share a culture is the basis for a branch of the statistical discrimination literature
descended from Phelps (1972); see especially Aigner and Cain (1977) and Cornell and
Welch (1996).2 Our contribution here may be viewed as providing firmer foundations for
this approach. While our starting point is a greater capacity for individuals to interpret
the opinions of those in their own group, this capacity evolves over time in ways that can
generate substantial within-group heterogeneity.

3 The Model

Consider a population N = {1, . . . , n} partitioned into two sets N1 and N2, each of which
corresponds to a distinct identity group. We refer to these as group 1 and group 2 respec-
tively. Let nk ≥ 3 denote the size of group k.

There is a sequence of periods t = 0, 1, ... in each of which there is a state θt ∈ R about
which individuals would like to have precise beliefs. Each individual holds an idiosyn-
cratic prior belief about the distribution from which θt is drawn. Specifically, according to
the prior belief of individual i, θt is normally distributed with mean µi and unit variance:

θt ∼i N(µi, 1).

We refer to the prior mean µi as the perspective of i. The interpretation is that the per-
spective governs the manner in which information regarding a broad range of issues is
filtered, with the state in each period corresponding to a distinct issue.

An individual’s perspective is not observable by others, but it is commonly believed

2In contrast, models of statistical discrimination such as Arrow (1973) and Coate and Loury (1993) in-
volve ex ante identical groups.
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that the perspectives µ = (µ1, ..., µn) are jointly distributed according to

µ ∼ N(µ, Σ),

where µ = (µ1, . . . , µn) is the mean and Σ is a variance-covariance matrix with typical
element σij. Here, µi represents observable attributes of i that affect her perspective in
a known manner, while Σ describes the residual uncertainty about perspectives. The
variance-covariance matrix is a central component of our analysis, while the means µi do
not play any role.

We assume that perspectives are correlated within but uncorrelated across groups:

Σ = σ2
0

[
Σ1 0
0 Σ2

]
.

Here the submatrices Σk have diagonal elements 1 and off-diagonal elements ρk ∈ (0, 1].
That is, for any i 6= j, σij = σ2

0 ρk if i and j are both members of group k, and σij = 0
otherwise. We can think of a group with high correlation ρk as being relatively homoge-
neous or tight-knit. The parameter σ2

0 reflects the degree to which an individual’s beliefs
about the perspectives of others are imprecise, before any information contained in one’s
own prior has been taken into account. Since priors are correlated within groups, this in-
formation will reduce uncertainty about the perspectives of own-group members, as we
discuss below.

All individuals receive private, informative signals about states. Specifically, in period
t, each individual i observes the signal

xit = θt + εit, (1)

where εit ∼ N(0, τ2
it). The signal variance τ2

it captures the degree to which i is well-
informed; the lower this variance the greater the expertise of i about the period t state.

While signal realizations are privately observed, the signal variances (τ2
1t, . . . , τ2

nt) are
public information. That is, at the start of each period, each individual knows who is
well-informed about the current issue and who is not, but does not know the content of
anyone else’s information.

Having observed xit, individual i updates her belief about the period t state in accor-
dance with Bayes’ rule, resulting in the posterior:

θt ∼i N

(
yit,

τ2
it

1 + τ2
it

)
. (2)
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We refer to yit as i’s opinion in period t. This is simply a weighted average of an individ-
ual’s prior and her signal, with weights determined by the precision of her information:

yit =
τ2

it
1 + τ2

it
µi +

1
1 + τ2

it
xit. (3)

We assume that the variances are uniformly bounded: τ2 ≤ τ2
ij ≤ τ2 for some strictly

positive real numbers τ2 and τ2 with τ2 < τ2. That is, no individual is ever perfectly
informed, but all signals carry some information. We allow serial and cross-individual
correlation in the distributions of expertise, but assume that they satisfy the following:
for each open neighborhood V of each τ2 ∈ {τ2, τ2}N, there is a strictly positive uniform
lower bound on the probability that (τ2

1t, ..., τ2
nt) is in V across all histories. For example,

the probability of τ2
it < τ2 + ε and τ2

it > τ2− ε is bounded away from 0 across all histories,
although it may be vanishingly small as ε→ 0.

In each period, each individual can observe one other individual’s opinion, but cannot
separately observe the constituent priors and signals. That is, in each period t, after the
realized expertise levels (τ2

1t, . . . , τ2
nt) have been publicly observed, each i chooses a target

λt (i) ∈ N\ {i} and observes the opinion yλt(i)t. In choosing targets, individuals seek the
most informative opinion. That is, individuals are myopic with payoff at t equal to the
negative of the variance of their belief about θt, once this belief has been updated based
on their own private signal and the opinion they choose to observe.

Certain aspects of the model are worth emphasizing. First, this is a model of listen-
ing, in that individuals do not actively communicate or misrepresent their opinions, and
targets are the only endogenously chosen source of information. Second, the interaction
is not strategic: the payoff to an individual depends only on her own choices. And third,
the model extends that in Sethi and Yildiz (2016), which corresponds to the special case
of ρ1 = ρ2 = 0. Here we introduce distinct groups, defined by correlated perspectives,
and study the effects of such correlation on patterns of communication.

4 Preliminaries

In this section we describe how people choose targets and make inferences about perspec-
tives, and how this affects patterns of subsequent communication.

Beliefs about the perspectives of others change through the observation of posteriors.
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Let Σ(i, t) denote the variance-covariance matrix of µ at time t as perceived by individual
i. Here Σ(i, t) has entries σjj′(i, t) with variances σjj(i, t) ≡ σ2

j (i, t) on the diagonal. These
reflect i’s uncertainty about each individual j’s perspective. For all i and t, σjj′(i, t) = 0
whenever j and j′ belong to distinct groups.3

Initially, an individual’s uncertainty about the perspectives of those who are not in her
own group is given by σ2

0 . That is, σ2
j (i, 0) = σ2

0 if i and j belong to different groups. How-
ever, if i and j both belong to group k, initial beliefs are updated as follows. Observing µi,
i believes that µj is distributed normally with some mean Ei[µj|µi] and variance

σ2
j (i, 0) = Vari(µj|µi) = σ2

0 (1− ρ2
k). (4)

If ρk = 1, all individuals in group k have the same perspective, and this common perspec-
tive is known to all members of the group. If ρk < 1, there is subjective uncertainty about
all perspectives other than one’s own. But uncertainty is smaller for own-group members
than out-group members, and this greater initial understanding of one’s own culture is a
key channel through which group membership influences communication in the model.

4.1 Choosing Targets

Each individual can observe exactly one other opinion in each period, and makes this
choice with the objective of having the most precise beliefs about the current state. But
the most informative opinion need not come from the best-informed source.

If i observes j’s opinion in period t, then from (1) and (3), she obtains the following
signal for θt:

(1 + τ2
it)yjt = θt + ε jt + τ2

jtµj.

This signal is noisy for two reasons: j’s information is not perfect, and j’s perspective is
not perfectly known to i. The variance of the noise in the signal is

γij(t) = τ2
jt + τ4

jtσ
2
j (i, t). (5)

This expression reveals clearly that in choosing a target j, an individual i has to trade-off
noise in the information of j against uncertainty in i’s understanding of j’s perspective.

3Furthermore, since i’s own perspective is known to her, the terms σij(i, t) and σji(i, t) are all identically
zero for all t and all j ∈ N.
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This is the trade-off between sources who are well-informed, and those who are well-
understood by the observer. Initially, individuals within one’s own group are better un-
derstood relative to those outside, but this can change over time as information is realized
and perspectives become better understood.

The assignment of individuals to targets in period t may be represented by a function
λt : N → N, where

λt(i) ∈ arg min
j

γij(t). (6)

That is each individual in each period chooses a target whose opinion is the most infor-
mative about the state. In case of ties we assume simply that i chooses the target with the
smallest label. This tie-breaking rule does not play a role in our results.4

4.2 Learning Perspectives

Suppose that i observes the opinion ylt of individual l in period t; i.e., λt(i) = l. This opin-
ion has been formed in accordance with (2-3), and hence provides the following signal for
µl: (

1 + τ2
lt

τ2
lt

)
ylt = µl +

1
τ2

lt
(θt + ε lt) .

The signal contains an additive noise term with variance

α(τ2
it, τ2

lt) =
1
τ4

lt

(
τ2

it
1 + τ2

it
+ τ2

lt

)
. (7)

Note that the variance of the noise is bounded above and below:

α(τ2, τ2) ≤ α(τ2
it, τ2

jt) ≤ α(τ2, τ2).

After observing her target’s opinion, i’s beliefs about the target’s perspective become
more precise in accordance with:5

1/σ2
l (i, t + 1) = 1/σ2

l (i, t) + 1/α(τ2
it, τ2

lt). (8)

That is, the precision of i’s belief about her target l’s perspective increases by an amount
that depends on the expertise levels of both i and l. Note that α is decreasing in τ2

lt and

4In cases with discrete signal variance distributions ties arise with positive probability. For simulations
dealing with such cases, we assume that ties are broken uniformly at random.

5This expression follows from standard formulas, and can also be obtained by replacing both j and j′

with l in equation (9) below.
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increasing in τ2
it. Hence, other things equal, if i happens to observe l during a period in

which l is very precisely informed about the state, then i learns very little about l’s per-
spective. This is because l’s opinion largely reflects her signal and is therefore relatively
uninformative about her prior. And if i is very well informed when observing l, the oppo-
site effect arises, and i learns a great deal about l’s perspective. Having good information
about the state also means that i has good information about the distribution of l’s sig-
nal, and is able to make a sharper inference about l’s perspective based on the observed
opinion.

Since perspectives are correlated, i also learns something about other members of the
group to which her target belongs. We call this indirect learning. Specifically, observing the
opinion of her target, i updates her beliefs about (µ1, . . . , µn), resulting in a new variance-
covariance matrix Σ(i, t + 1) with entries

σjj′(i, t + 1) = σjj′(i, t)−
σjl(i, t)σj′l(i, t)

α(τ2
it, τ2

lt) + σ2
l (i, t)

(9)

for each pair j, j′ ∈ N. Since perspectives are correlated within groups, i updates her
beliefs about all those in the group to which her target belongs, even though these indi-
viduals are not directly observed by i in t. That is, σjj(i, t + 1) < σjj(i, t) for each j from
the target’s group. Note that i does not update her beliefs about the perspectives of those
in the group to which her target does not belong.

That is, observing a target is informative about the current state, the target’s perspec-
tive, and the perspectives of all others in the target’s group. Given the distribution gov-
erning expertise realizations, the dynamics of belief updating define a Markov process
where the period t state consists of the variance-covariance matrices Σ(i, t) for i ∈ N.
These matrices, together with the expertise realizations in t, fully determine the pattern
of observation that will arise in each period.

4.3 Free and Broken Links

Define the threshold variance

σ2 =
τ2 − τ2

τ4 . (10)

By (5) an individual i is indifferent between a target j with maximally precise signal and
σ2

j (i, t) = σ2 and a target j′ with minimally precise signal and σ2
j′(i, t) = 0. Hence, if

σ2
j (i, t) < σ2 at some period t, then i links to j when j has very high expertise and every
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j′ 6= j has very low expertise. This is a positive probability event in period t, and remains
so in all subsequent periods. Accordingly, if σ2

j (i, t) < σ2 we say that the link from i to j
is free. In this case i will observe j infinitely often almost surely, learning the perspective
of j in the long run.

Next define the mapping β : (σ2, ∞)→ R by

β(s2) =
τ4

τ4 (s
2 − σ2). (11)

Here, β(s2) is defined by equality τ2 + τ4s2 = τ2 + τ4β
(
s2), so that by (5), an individual i

is indifferent between a target j with maximally precise signal and σ2
j (i, t) = s2 and a tar-

get j′ with minimally precise signal and σ2
j′(i, t) = β

(
s2). Hence, if σ2

j′(i, t) < β(σ2
j (i, t)),

then i will not link to j at period t, regardless of expertise realizations.

If priors were uncorrelated, as in Sethi and Yildiz (2016), i would never link to j again
once this condition is met. But with correlated priors, i may learn about j’s perspective by
observing the opinions of other members of the group to which j belongs, and this may
induce i to link to j in subsequent periods. However, if there is j′ from a group k′ with

σ2
j′(i, t) < min

j∈Nk
β(σ2

j (i, t)), (12)

then i will never link to any j in group k thereafter, and we say that all links from i to
those in group k are broken. More generally, we say that a link from i to j is broken if the
probability that it will form in any future period is zero.

If σ2
0 < σ2, then all links are free at the outset. In this case (as we show below) targets

will be chosen on the basis of expertise alone, regardless of group membership, in the
long run. If, instead, we have σ2

0 > σ2, then observational patterns even in the long run
will depend on the degree to which perspectives are correlated within each group.

4.4 Long Run Experts and Homophily

Over time, each individual sharpens her understanding of her targets and, to a lesser
extent, also her understanding of those who share a culture with these targets. As in Sethi
and Yildiz (2016), after a finite number of periods, each potential link j either becomes
free or breaks. For each i, therefore, there exists some (history-dependent) set Ji ⊆ N\ {i}
of long-run experts who are observed infinitely often. The perspectives of these long-run
experts are learned to an arbitrarily high degree of precision, and hence i eventually links
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with high likelihood to the most informed individual in Ji in each period. Formally, for
each infinite history and ε > 0, there exists some t such that, for each t > t,

λt (i) ∈ Ji and τ2
λt(i)t ≤ min

j∈Ji
τ2

jt + ε.

Our main concern in this paper is the manner in which culture affects these sets of long
run experts, with particular focus on the degree of homophily.

In the context of information gathering, homophily refers to the extent to which indi-
viduals exhibit a preference for own-group members in the process of observing opinions.
To measure this, for each individual i in group k, we define a (history-dependent) index
of homophily as follows:

ηi =
|Ji ∩ Nk|
|Ji|

This is the proportion of i’s long run experts who belong to i’s own group. The index lies
in the unit interval and equals 1 if i’s long run experts all lie in her group, and equals 0
if they all lie outside it; we shall refer to these cases as extreme homophily and extreme
heterophily respectively.

This measure of homophily does not adjust for group size, so even if all individuals
were completely unbiased in their choice of targets, members of larger groups will ex-
hibit greater values of the homophily index. We say that an individual i satisfies baseline
homophily in the long run if ηi = η∗i where

η∗i =
nk − 1
n− 1

.

An individual who eventually chooses targets based only on their expertise levels will
exhibit baseline homophily.6 If ηi > η∗i then i is said to exhibit inbreeding homophily, and if
ηi < η∗i then she exhibits heterophily.

To measure the degree to which an individual i in group k exhibits inbreeding ho-
mophily (or heterophily) we follow Currarini et al. (2009) and define

ζi =
ηi − η∗k
1− η∗k

.

This index equals zero at baseline homophily, and is negative if i exhibits heterophily. It
takes its maximum value of one when i consults only individuals from her own group.

6So will an individual who chooses targets entirely at random, but such choices will not be consistent
with the assumed decision rule.
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These indexes can be applied to groups rather than individuals by simple aggregation.
As we shall see, a group may exhibit moderate levels of homophily even as its individual
members exhibit either extreme or baseline homophily.

5 Observational Networks

Although our primary interest is in characterizing long run observational patterns for
general levels of correlation, we start with a static model that corresponds to the initial
period of our dynamic model. We then consider two extreme cases—perfect correlation
and independent perspectives—as benchmarks for the multi-period setting. Finally we
turn to the general case, present our main results, and explore some additional features
of the model using a family of examples.

5.1 The Initial Period

Consider the patterns that can arise in a version of the model with a single period. Given
myopic choices, this is equivalent to the first period of the dynamic model.

Since there is no observational history, the perspectives of others in one’s group are
learned only through introspection, and those of individuals outside one’s group are not
learned at all. For any i and j both belonging to the same group k, i updates her beliefs
about the perspective of j based on her own perspective, resulting in a more precise be-
lief about µj in accordance with (4). The variance of i’s beliefs about the perspectives of
those not in group k remains at σ2

0 . Thus individuals have a better understanding of the
perspectives of their fellow group members and can better extract information from their
opinions in the initial period.

It is clear from this that a group containing the best-informed person in the popula-
tion as a whole will exhibit inbreeding homophily. In fact, there are only two possible
types of observational pattern in the static model: either both groups exhibit inbreeding
homophily, or one exhibits extreme heterophily.

To see why, let j1 ∈ arg minj∈N1 τ2
j0 and j2 ∈ arg minj∈N2 τ2

j0 denote the best-informed
members of their respective groups. As long as these two individuals have similar levels
of expertise, the initial affinity for own-group targets will ensure that we have inbreeding
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Figure 1: Inbreeding homophily in both groups

1

2 3

4

5 6

Figure 2: Inbreeding homophily in one group and heterophily in the other

homophily in both groups:

λ0(i1) = j1 and λ0(i2) = j2 for all i1 ∈ N1 \ {j1} and i2 ∈ N2 \ {j2}

This outcome is illustrated in Figure 1.

When the expertise levels of j1 and j2 differ sharply, a different outcome can arise, with
the globally best-informed individual being targeted by all others in the population. This
outcome is illustrated in Figure 2, where we see inbreeding homophily in one group and
extreme heterophily in the other.

As the correlation in perspectives gets larger, homophily in both groups becomes more
likely. If this correlation is high enough then homophily is ensured, as long as σ2

0 > σ2.
This is because σ2

j (i, 0) < β(σ2
0 ) whenever ρk > ρ, where ρ is the solution to σ2

0 (1− ρ2) =

β(σ2
0 ), and given by:

ρ =
√

1− (τ4/τ4)(1− σ2/σ2
0 ). (13)

To summarize, inbreeding homophily in both groups arises with positive probabil-
ity for all parameter values. If there are large differences in expertise between the best-
informed individuals in the two groups, and the correlation in perspectives is not too
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great in either group, then the best-informed individual in the population as a whole will
attract all observers. But if σ2

0 > σ2, then any group with highly correlated perspectives
will exhibit inbreeding homophily. The degree to which members of such groups under-
stand each other will overwhelm any informational disadvantage that might arise.

This applies to the static model in which all individuals within a group are symmet-
rically placed with respect to each other. In the dynamic model, this symmetry is broken
over time and more complex patterns can arise.

5.2 Two Benchmarks

Recall that for each individual i, there exists a history-dependent set Ji ⊆ N\ {i} of long-
run experts, such that, in each period, i targets the most informed individual in Ji for that
period in the long run. We now investigate what form these long-run expert sets must
take, starting with two benchmarks: perfectly correlated priors and uncorrelated priors.

Suppose first that perspectives are fully determined by group membership:

ρ1 = ρ2 = 1.

In this case, for any given group k, all members have a common perspective, and this
perspective is known to all members of the group. Suppose, first, that we have high
cross-cultural uncertainty:

σ2
0 > σ2.

Since ρk = 1 > ρ for each k, each i in each group k will initially target the most informed
individual (other then herself) in her own group. Since individuals already know the
common perspective of their own group, and learn nothing about the common perspec-
tive of the other group, their beliefs about perspectives remain unchanged. Hence, at
t = 1, they repeat the this behavior, and keep repeating it thereafter:

λt (i) ∈ arg min
j∈Nk\{i}

τ2
jt (∀t, k, ∀i ∈ Nk) .

Given the initial high uncertainty about each other, groups remain isolated throughout
and there is no cross-cultural communication.

Next consider the case of low cross-cultural uncertainty:

σ2
0 < σ2.
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As saw in Section 5.1, the pattern of communication in the initial period now depends
on expertise realizations. If the best-informed individuals in the two groups have similar
expertise levels, we will see extreme homophily to begin with. However, if the difference
between the expertise levels of the best informed individuals in two groups is large, one
of the groups will exhibit heterophily. Since there is a positive lower bound for the prob-
ability of cross-cultural communication at every period, all individuals will have an op-
portunity to learn about the other culture infinitely many times, almost surely, in the long
run. Moreover, there is a positive lower bound for the reduction in uncertainty about per-
spectives, and hence every individual will eventually learn every perspective. Cultures
will ”merge” in the long run, and everybody will target the most informed individual—
regardless of group identity—in the population at large.

To summarize, when perspectives are perfectly correlated within each group, there is
either a merging of cultures—with all individuals eventually targeting the best informed
person in the population—or complete segregation in the long run. These relative simple
communication structures preclude any within-group heterogeneity.

As a second benchmark, consider the case of uncorrelated priors in each group:

ρ1 = ρ2 = 0.

This case has been studied extensively in Sethi and Yildiz (2016), and we summarize some
of the most relevant findings here. With uncorrelated priors, since the perspective of one
individual tells us nothing about the perspectives of others, one can view this case as n
cultural groups with a single member in each.

When σ2
0 < σ2, as in the case of perfect correlation, individuals eventually learn

all other perspectives and target the most informed individual in the long run. When
σ2

0 > σ2, an extreme form of informational leadership arises with positive probability:
for some i∗ ∈ N, every individual i 6= i∗ targets i∗ at every period t. Moreover, such ex-
treme individual leadership is the only possibility when uncertainty about perspectives
is sufficiently high. Although a wide range of observational patterns emerge with posi-
tive probability for intermediate values of σ2

0 in the long run, a weaker form of opinion
leadership arises with high probability: each individual focuses on a small set of long-run
experts in the long run. Formally, for σ2

0 > σ2, Sethi and Yildiz (2016) obtain a uniform
upper bound for Pr (|Ji| > m) where the upper bound is exponentially decreasing in m.
We show below that a similar “law of the few” also holds in the more general case of
correlated priors.
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In both these benchmarks, when cross-cultural uncertainty is low (i.e. σ2
0 < σ2), there

is a merging of cultures, and each individual observes the most informed source in each
period in the long run. Our first result below shows that this holds more generally, with
arbitrary levels of within-group correlation in perspectives.

5.3 Merging of Cultures

When initial uncertainty about perspectives is low, individuals get to observe others and
eventually learn their perspectives, listening to the most informed individuals in the long
run. In particular, group identity eventually becomes irrelevant.

Proposition 1. If σ2
0 < σ2, then Ji = N \ {i} for all i almost surely; all individuals exhibit

baseline homophily in the long run.

When σ2
0 < σ2, all individuals exhibit baseline homophily except on histories that

arise with zero probability. The reason is that an individual will always prefer to observe
a target from the other group if the latter is sufficiently well informed, provided that
the best-informed in her own-group is sufficiently poorly informed. This is a positive
probability event regardless of history. The implication is that all perspectives are learned
to a high degree of accuracy in the long run, and all medium run effects arising from the
dependence on history of observational choices are washed away.

The remainder of this section is focused on the case of high cross-cultural uncertainty
(i.e. σ2

0 > σ2). Here the two benchmark models exhibited very different long run char-
acteristics: extreme homophily under perfect correlation (ρk = 1) and opinion leadership
with positive probability under independent perspectives (ρk = 0). For more general cor-
relations, we will show that there must be extreme homophily when ρk is sufficiently high.
Rich patterns of behavior—including extreme homophily—can emerge otherwise. We
will provide a lower bound on the probability of extreme homophily, where this bound
increases to 1 as ρk rises.

For intermediate values of ρk, we will show that individuals will either listen to a lim-
ited number of individuals from a culture or open up to the culture completely, listening
to any member of the group when she is more informed than others in the long run. This
is due to the indirect learning of perspectives. When ρk is low, indirect learning is not
sufficient, and our model inherits the properties of the benchmark case with independent
perspectives. For that case, we will show that each individual is likely to listen to only a
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few individuals in the long run.

5.4 Homophily

If σ2
0 > σ2, then long run observational patterns depend on the correlation in perspectives,

and individuals may exhibit extreme levels of homophily:

Proposition 2. When σ2
0 > σ2, there is a positive probability that each individual exhibits extreme

homophily:
λt (i) ∈ Nk (∀t, ∀k, ∀i ∈ Nk) .

In addition, if ρk > ρ, then all individuals in group k exhibit extreme homophily almost surely.

Hence, unless the sufficient condition for baseline homophily holds, each individual
exhibits extreme homophily with positive probability. In groups with sufficiently high
correlation in perspectives, extreme homophily is ensured. The reason is as follows. For
high enough correlation, all individuals observe within group members in the first pe-
riod regardless of expertise realizations. But this only increases understanding of within
group perspectives, without raising knowledge of any perspectives outside the group.
As a result, the likelihood of extreme homophily cannot decline, and remains at 1. Even
if correlation in perspectives is low, extreme homophily in the first period is a positive
probability event, and a repetition of this first period network for some finite number of
periods is also a positive probability event. If this number of periods is large enough, then
each individual in the group develops so great an understanding of their initial target’s
perspective that no other target is ever subsequently observed, regardless of the expertise
realizations that may later arise.

We next present a lower bound on the probability that a given individual in a given
group will exhibit homophily in the long run. As the group size gets large, this probability
approaches 1 under any ρk > 0.7 For simplicity, we use a binary expertise distribution:

τ2
it =

{
τ2 with probability q,
τ2 with probability 1− q.

(14)

Our result can be extended easily to general distributions at the expense of clarity.

Proposition 3. Assume that expertise levels are independently and identically distributed across
individuals and over time according to the binomial distribution in (14). Then, for any σ2

0 >

7Our bound is derived using the techniques in Sethi and Yildiz (2016).
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σ2, any group k and any i ∈ Nk, individual i exhibits extreme homophily in the long run with
probability

Pr (Ji ⊂ Nk) ≥
(

q + (1− q)n−1

q + (1− q)nk−1

)max{dκe,0}

≡ p∗

where

κ =
α(τ2, τ2)

σ2
0

[
1

1− ρ2 −
1

1− ρ2
k

]
. (15)

Proposition 3 provides a lower bound p∗ on the probability of extreme homophily
under the binomial distribution. This bound has two elements. First, the term in brack-
ets measures the relative likelihood of listening to the most informed in-group member,
rather than crossing the boundary and listening to someone from the other group. Sec-
ond, the exponent max {dκe , 0} measures the number of repeated observations of an in-
group member that is sufficient to break all the links to the other group.8 That is, links to
the other group are broken permanently after dκe observations of an in-group member’s
opinion if nobody from the other group has been observed in the meantime.

The bound p∗ satisfies several intuitive comparative statics. First, it is increasing in
group size nk, and it approaches to 1 as nk → ∞. That is, as the group size gets large,
extreme homophily becomes virtually certain. This is intuitive. The likelihood of extreme
homophily in the initial period is increasing in group size; the larger the group the more
likely it will be that the group contains an individual who is the globally best-informed.
If this happens repeatedly for some initial set of periods, all links to out-group members
break and expertise realizations in subsequent periods become irrelevant. The number of
needed repetitions may be large, but is finite for any ρk > 0. The probability of this event
can be made arbitrarily close to 1 by increasing group size.9 In the same vein, the lower
bound is increasing in probability q of high expertise and approaches 1 as q→ 1.

Second, the bound p∗ is increasing in ρk and approaches 1 as ρk approaches the cutoff
ρ, after which there is extreme homophily with probability 1 (by Proposition 2). That is,
the more tight-knit the group, the stronger is the force for homophily. Under the binomial
distribution, when ρ > ρk > 0, ρk does not affect the probability of homophily in the first
period. It affects the probability of homophily in the long run by weakening the links to

8The operators d·e and b·c respectively round up and round down to the nearest integer.
9Note that this argument is quite general, and applies even if expertise is continuously distributed.

When a group is large, there is a high likelihood that it will contain someone with expertise close to that of
the globally best informed. This is true even if the other group is even larger. With correlated perspectives,
we again get homophily with high probability.
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the other group, so that the links to the other group break faster as ρk increases. Finally,
it is increasing in initial uncertainty σ2

0 about the perspectives of the other group. The
lower bound approaches 0 as σ2

0 goes down to σ2 (recall that individuals exhibit baseline
homophily in the long run when σ2

0 < σ2 by Proposition 1).

5.5 A Bang-Bang Result

More complex and interesting observational patterns can arise if σ2
0 > σ2, and ρk < ρ for

at least one group k. In this case neither universal unbiasedness nor universal extreme
homophily are ensured, and substantial within-group behavioral diversity can arise. To
explore this case, for each individual i and group k, let

mik = |(Ji ∪ {i}) ∩ Nk|

be the number of individuals from group k whose opinions i observes infinitely often; this
set includes herself if she belongs to group k. Using information on these mk perspectives
alone, i can update her beliefs about the perspectives of all other individuals in group k,
even if none of these has ever been observed. The variance of these updated beliefs is
σ2

0 /φ (mik, ρk) where

φ (m, ρ) =
1− ρ/ (mρ + 1)

1− ρ
≥ 1. (16)

That is, i’s uncertainty about the perspectives of all individuals in group k shrinks by a
factor of (at least) φ (mik, ρk) if she observes mk members of the group infinitely often. This
is the indirect learning that we discussed in the introduction. Culture affects the dynamics
of communication patterns through this channel, as we establish now.

Note that the factor φ (m, ρ) is increasing in both m and ρ. It is increasing in ρ because
it is easier to learn about others indirectly in more homogenous groups. It is increasing in
m simply because m is the size of the data. Importantly for our paper, there is a limit to
indirect learning, and the initial sampling accounts for a large fraction of indirect learning.
Formally, as m → ∞, φ (m, ρ) approaches to 1/ (1− ρ), and indirect learning can at most
reduces the variance by a factor of 1− ρ. In contrast, the first observation reduces the
uncertainty by a factor of

1/φ(1, ρ) = 1− ρ2.

Hence, the initial sampling accounts for 1/ (1 + ρ) fraction of infinite sampling, account-
ing for more than half of the reduction in uncertainty.
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If the variance σ2
0 /φ (mik, ρk) of the updated beliefs falls below the cutoff σ2, then i

learns the perspectives of the other members of group k so well that she links to each
member of group k infinitely often. In this case we must have mik = nk. When ρk is below
the cutoff

ρ = 1− σ2/σ2
0 , (17)

the variance σ2
0 /φ (mik, ρk) never falls below σ2, and indirect learning is never sufficient

to free a link by itself, regardless how many perspectives one learns from group k. On
the other hand, when the correlation ρk for group k is above the cutoff √ρ, the variance
σ2

0 /φ (mik, ρk) falls below σ2 at mik = 1, and all links within group k become free at the
beginning as they learn about the perspectives of the other group members from their
own perspectives. In the long run, they link to a group member whenever that group
member is more informed than the others. These two cutoffs will play important role in
our analyses below, as the long-run communication patterns will dramatically depend on
where the correlations ρk falls with respect to these cutoffs.

To identify when σ2
0 /φ (mik, ρk) falls below σ2 more generally, suppose that ρ > ρ and

define

m
(

σ2
0 , ρ
)
=

(
1− ρ

ρ

)
σ2

0 − σ2

σ2 − (1− ρ)σ2
0

. (18)

This solves the equation
σ2

0

σ2 = φ (m, ρ) .

Note that m
(
σ2

0 , ρ
)

is positive and finite if and only if σ2/σ2
0 > 1− ρ, i.e., ρ > ρ.

When mik > m
(
σ2

0 , ρk
)
, we have σ2

0 /φ (mik, ρk) < σ2. This implies that if i learns the
perspectives of m

(
σ2

0 , ρk
)

or more members of group k, she must link to all members of
group k in the long run. Bearing in mind that each individual knows her own perspective
to begin with, this reasoning leads to the following result.

Proposition 4. Consider any individual i and any group k with ρk > ρ ≡ 1− σ2/σ2
0 . Then:

(Ji ∪ {i}) ∩ Nk = Nk or |(Ji ∪ {i}) ∩ Nk| < m(σ2
0 , ρk).

This result states that each individual i either links to every other member of her
own group with positive probability in the long run, or links to at most m

(
σ2

0 , ρk
)
− 1

of them. In addition, either i links to every member of the other group k′, or links to at
most m

(
σ2

0 , ρk′
)

of them. In either case, the set of individuals whom i consults infinitely
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often must either fall below some threshold (that depends on the correlation in group
perspectives), or must constitute the entire group.

Observing a sufficiently large number of individuals in a group many times leads
to sharp beliefs about the perspectives of others in the group, which makes these also
desirable candidates for observation when they are well-informed. Since one’s own per-
spective is known at the outset, the critical number of own-group targets that need to be
observed for this effect is lower. Note that the threshold m

(
σ2

0 , ρ
)

is increasing in σ2
0 and

decreasing in ρ. Hence high correlation and low initial uncertainty about perspectives
lead to lower thresholds for this tipping process to arise, and make it more likely that all
members of the group will eventually be observed.

While the two critical thresholds (own group and other group) may seem virtually the
same, the probability of homophily can be significantly greater than that of heterophily,
since early observations are more likely to involve own group members. This is espe-
cially the case for large and tight-knit groups, as we have seen. More importantly, as we
discussed above, most of indirect learning happens through the first sampling of perspec-
tives, leading to homophily.

The cutoff √ρ yields a very simple and intuitive condition under which i either ex-
hibits extreme homophily or completely unbiased behavior. Suppose i ∈ Nk. If ρk >

√
ρ,

then i must link to all in-group members. This follows from Proposition 4 and the fact
that m

(
σ2

0 , ρk
)
< 1 in this case. Now suppose that i 6∈ Nk, and ρk >

√
ρ. Then, i must

link to all or none of those in group k. Taken together, this means that i exhibits either ex-
treme homophily in the long run, or complete unbiasedness, in the sense that she simply
observes the individual who is globally best informed.

Corollary 1. For any i ∈ N and any group k with ρk >
√

ρ, we have

Ji ∩ Nk = Nk\ {i} if i ∈ Nk and

Ji ∩ Nk ∈ {∅, Nk} if i 6∈ Nk.

In particular, if ρk >
√

ρ for each k, then, in the long run, each individual exhibits either maximal
or baseline homophily.

One implication of the results obtained above is that when m is finite and a group is
sufficiently large, repeatedly observing the opinions of a small fraction of group members
is enough to learn the perspectives of all others in the group to a high degree, even if they
have not been directly observed. As a result, these individuals will eventually come to
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Figure 3: Free links in the long run for nine agents in two groups. Each cells is the observational

network for one agent, depicted with a black boundary, and links are to the agent’s long-run

targets.

be observed, whenever they happen to be substantially better informed than others in
the population. This leads to the following bang-bang result, which holds under a wider
range of parameter values than in the small group case:

Corollary 2. For any i ∈ N, any group k with ρk >
√

ρ, and every ε > 0, there exists n such
that, if nk > n, then either mik < εnk or mik = nk.

That is, if group k is sufficiently large, all individuals in the population either observe
only a small fraction of those in this group, or observe all members of the group in the
long run.

The following example illustrates a case in which one group exhibits varying levels
of homophily across individuals, while the other is characterized by considerable hetero-
geneity, with some individuals exhibiting homophily while the others exhibit heterophily.

Example 1. Take n1 = 3, n2 = 6, ρ1 = 2/3, ρ2 = 1/4, τ2 = 1/2, τ2 = 1, and σ2
0 = 3. Then

σ2 = 2, so σ2/σ2
0 = 2/3, yielding ρ = 1/3. Since ρ1 >

√
ρ, all individuals in group 1 link to all
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others in their group, while all those in group 2 either link to all or none in group 1. Furthermore,
since ρ2 < ρ, for all i ∈ N, the number of long-run links to members of group 2 is unconstrained.

Figure 3 shows the long-run structures that arise in this example for a particular real-
ization of expertise levels. All links are resolved (either broken or free) 38 periods have
elapsed. The figure shows the long-run expert sets for each of the nine agents in a sepa-
rate cell, with colors indicating group membership and a black boundary identifying the
subject or observer in each cell. Consistent with the results, each of the three members of
group 1 link to the other two infinitely often, as shown in the top row. They differ only
with respect to their links to the other group, which range from none to three. Under the
parameter specifications in the example, group 2 individuals must link to all or none of
those in group 1, and this is also seen in the figure: three link to all and three to none.

While the figure shows only one realization of the process, and one set of possible
long-run structures, it illustrates the manner in which long-run structures are constrained
by the correlation in perspectives within groups.

5.6 The Size of Expert Sets

There is a limit to how much one can learn about an individual indirectly by observing
other individuals from his group. Indirect learning can at most scale down the variance
by 1− ρk. Hence, when ρk < ρ, the effect of indirect learning is not sufficient for links
to unobserved individuals to become free. In that case, our model inherits the long-run
communication patterns under independent perspectives in Section 5.2.

For any individuals i and j and any history, define

σ̂2
j (i, t̂) =

1/σ2
0 + ∑
{t<t̂|γt(i)=j}

1/α(τ2
it, τ2

jt)

−1

.

This would be the variance of the belief of i about the perspective of j ∈ Nk if she ignored
the implications of the information she gleaned from observing the others in group Nk—
including her own perspective if she also belongs to Nk. This is the variance from direct
learning. Of course, as we have seen above, she also learns indirectly by observing others
from Nk. However, there is a limit to such learning:10

σ2
j (i, t) ≥ σ̂2

j (i, t) /φ (nk − 1, ρk) > (1− ρk) σ̂2
j (i, t) .

10One can compute σ2
j (i, t) by first incorporating indirect learning and then direct learning. Since indirect
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That is, the variance of the belief of i about the perspective of j is at least (1− ρk) σ̂2
j (i, t).

Intuitively, one can compute σ2
j (i, t) from σ̂2

j (i, t) by conditioning on the information
obtained indirectly from others in group Nk, and this can at most be what one could get
if she learned the perspectives of all the others in group Nk, which would scale down the
variance by φ (nk − 1, ρk).

This limitation of indirect learning causes the links to previously unobserved sources
to break as one gets increasingly familiar with one source. In particular, when ρk < ρ,
we have (1− ρk) σ2

0 > σ2, and hence indirect learning is not sufficient for an individ-
ual to observe previously unobserved members of group k even when they are uniquely
well-informed about the current state. Hence, if σ2

j (i, t) < β
(
(1− ρk) σ2

0
)

for some j, in-
dividual i will never target those j′ ∈ Nk she has not observed yet, and her links to them
will break permanently. This is because, although she may learn indirectly about these
sources, the variance of her beliefs about them will remain above (1− ρk) σ2

0 .

The resulting long-run communication patterns will be similar to those under the in-
dependent priors discussed in Section 5.2. In particular, we next show that individuals
are likely to focus on a small set of long-run experts in the long run, generalizing one of
the main results in Sethi and Yildiz (2016) to the case of correlated perspectives. We use
the binomial expertise distribution in (14) for simplicity.

Proposition 5. Assume that expertise levels are independently and identically distributed across
individuals and over time according to the binomial distribution in (14). Then, for any i ∈ N and
any group k with ρk < ρ ≡ 1− σ2/σ2

0 , we have

Pr (|Ji ∩ Nk| ≤ m) ≥
(

q
q + (1− q)m

)κs

≡ pk (m) (∀m ≥ 1) (19)

where

κs =

⌊
α(τ2, τ2)

β
(
(1− ρk) σ2

0
) − α(τ2, τ2)

σ2
0

⌋
. (20)

Proposition 5 establishes that the probability distribution pk first-order stochastically
dominates the number of the long-run experts from group k. Since pk has exponential

learning can at most reduce σ2
0 to σ2

0 /φ (nk − 1, ρk), we have

σ2
j (i, t) ≥

φ (nk − 1, ρk)

σ2
0

+ ∑
{t<t̂ | γt(i)=j}

1
α(τ2

it, τ2
jt)

−1

.

Using the definition of σ̂2
j (i, t) and simple algebra, one can show that the right-hand side is at least

σ̂2
j (i, t) /φ (nk − 1, ρk).
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tails, the probability of having more than m long-run expert from group k is exponentially
decreasing in k, resulting in a small expected number of long-run experts when κs is low.
Note that κs is increasing in ρk, and it goes to ∞ as ρk approaches ρ. In that case pk (m)

goes to zero, allowing large number of experts from group. This is intuitive because
when ρk > ρ, by Proposition 4, everybody in group k becomes a long run expert when
sufficiently many of them become one. However, pk (m) is only a lower bound on the
probability Pr (|Ji ∩ Nk| ≤ m), and this probability can be much higher if i is also familiar
with members of the other group k′ 6= k.

The logic of the proof is similar to the proof of Proposition 3. Under the binomial dis-
tribution, an individual i has a simple rule: if the individual j1 with the lowest variance
σ2

j (i, t) has high expertise (i.e., τ2
j1t = τ2) she targets j1; if j1 has low expertise, then she

checks the individual j2 with the second lowest variance σ2
j (i, t) and targets her if she has

high expertise; if she also has low expertise, then she goes on to the next familiar source,
and so on. Thus, she targets j1 with at least probability q. On the other hand, if she has
observed m individuals from group k some times in the past, she will not target any previ-
ously unobserved individual from group k unless all those m previously-observed targets
have low expertise, which has probability (1− q)m. Thus, the probability of observing the
most familiar individual T times before observing any previously unobserved individual
from group k is at least (

q
q + (1− q)m

)T
.

As she is making these observations, she learns about two things. First, she learns directly
about her target’s perspective, and there is a lower bound for that information, as in
(21). Second, she also learns indirectly about the perspectives of the others in her target’s
group, but there is an upper bound for such indirect learning, and the variance of her
belief about a unobserved individual’s perspective remains above σ2

0 (1− ρk), as we have
discussed above. Then, as i observes a most familiar individual repeatedly, the lowest
variance minj∈N\{i} σ2

j (i, t) eventually drops below β
(
σ2

0 (1− ρk)
)
, when all her links to

previously-unobserved individuals from group k breaks for good. Using the inequality
in (21), one can easily show that the number of repetitions for this to occur is at most κs.

Proposition 5 provides a theoretical explanation for the empirical regularity that in-
dividuals seek information from just a few sources, even when many better informed
sources exist. The reason is because previously observed sources have become better un-
derstood, and experimenting with new ones is no longer worthwhile. When groups are
large and exhibit homophily, the expert sets of two individuals from the same group will
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Figure 4: Regions of parameter space giving rise to homophily, unbiasedness, and indeterminacy.

largely coincide, and each group will have a small set of opinion leaders who are the
main source of information for others in their group. This may be viewed as a multi-
group version of what Galeotti and Goyal (2010) call the law of the few, though their
model provides a very different theory of the phenomenon.

Our findings in this section are summarized in Figure 4 for ρ1 = ρ2 = ρ. This fig-
ure shows regions of the parameter space under which various long run structures arise.
When ρ > ρ, we have extreme homophily and all individuals observe only in-group
members. When ρ >

√
ρ, individuals observe all others in their own group, and either

all or none in the other group. This is the region defined by σ2/σ2
0 > 1 − ρ2. When

ρ < min{√ρ, ρ}, more complex patterns of observation can arise, and there is consider-
able indeterminacy in outcomes. Here individuals may link to some members of a group
while ignoring others, and there may be considerable within-group heterogeneity in be-
havior. Despite such indeterminacy, when ρ < ρ ≡ 1− σ2/σ2

0 , experts sets are small in
expectation: each individual links to a few sources from each group in the long run with
high probability.
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Figure 5: Homophily and heterophily followed by heterophily in both groups

5.7 Heterophily

When σ2
0 > σ2 and ρk < ρ, although homophily remains as a distinct possibility, other

patterns of communication may emerge in the long run with positive probability. In par-
ticular, when ρk is low, learning effects may overwhelm cultural affinity, and individuals
may exhibit heterophily in the long run. The next example illustrates this.

Example 2. Suppose that N1 = {1, 2, 3}, N2 = {4, 5, 6}, σ2
0 = 10, and ρ1 = ρ2 = 0.1.

Consider the following sequence of expertise realizations and associated links:

t
0
1

τ2
1t τ2

2t τ2
3t τ2

4t τ2
5t τ2

6t

1 10 10 1.1 1.25 1.25
10 10 10 4 5 5

λt (1) λt (2) λt (3) λt (4) λt (5) λt (6)

4 1 1 1 1 1
4 4 4 1 1 1

Then, at t = 0, individual 1 emerges as an opinion leader: λ0(i) = 1 for all i 6= 1 and λ0(1) = 4.
At t = 1, we have extreme heterophily: λ1(i) = 4 for all i ∈ N1 and λ1(i) = 1 for all i ∈ N2.

In this example the two groups are each of size 3. In the first period the two individuals
with the greatest expertise are 1 and 4, with 1 being the best informed globally. Clearly 2
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and 3 observe 1, since they all belong to the same group. Since perspectives are not highly
correlated, all those in N2 also observe 1, and 1 observes 4. This pattern is shown in the
top panel of Figure 5.

Now consider the second period. Since all those in N2 were better informed than 2 and
3 in the initial period, they learn more about the perspective of 1 after the first observation.
This follows directly from (7). As a result, they are more inclined to observe 1 again in the
second period, even if there is a better informed individual in the population. Given the
small correlation in perspectives, this effect is strong enough to overcome the fact that 4,
a member of their own group, is globally the best informed in the second period. Hence
5 and 6 observe 1 in the second period. This is also the case for 4, who has learned even
more about the perspective of 1 in the initial period, and whose best within-group option
in the second period is worse.

Finally, consider the members of N1 in the second period. Since 2 and 3 were poorly
informed in the first period and learned little about the perspective of 1, they observe 4,
who is the globally best informed individual in the second period. So does 1, who has
already observed 4 in the initial period. As a result all members of the population observe
someone outside their own group. This outcome is shown in the bottom panel of Figure
5. We get extreme heterophily in both groups.

It is easily verified that this example is robust, in that there exists an open set of exper-
tise realizations that generates the same observational patterns. That is, each individual
in each period strictly prefers her chosen target to any target not chosen. This is the case
even for those in group N2 in period 2, whose chosen target has the same expertise as
others in group a; they have all previously observed only individual 1 and hence have a
strictly better understanding of her perspective.

Moreover, if the expertise levels in the subsequent periods were similar to the expertise
levels in the second period, everybody repeats their behavior at the second period in those
periods, learning their targets increasingly well so much so that their links to others break,
in that each i targets λ1 (i) for ever even when λ1 (i) is minimally informed and a member
of her own group is maximally employed. Therefore, under full support assumption for
expertise levels, extreme heterophily will emerge with positive probability in the long
run.
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Figure 6: Informational network after three periods with independent priors (Example 3).

5.8 Divided Attention

In the initial period more tight-knit communities (with more strongly correlated perspec-
tives) have a stronger tendency to homophily. Furthermore, larger groups are more likely
to exhibit homophily than smaller groups, for the simple reason that the globally best-
informed individual is more likely to be found in a larger group. These properties do not
extend to the multi-period setting, because of a divided attention problem, as illustrated
in the following sequence of examples.

Example 3. Suppose N1 = {1, 2, 3}, N2 = {4, 5}, τ2 = 4, τ2 = 2, and σ2
0 = 3/2, in which

case σ2 = 1/2. There is also an intermediate level of expertise: τ2
m = 3. Priors are independent

in both groups: ρ1 = ρ2 = 0. In this case, it takes one observation to make a link free. Moreover,
observing an individual’s opinion once when she has high expertise τ2 and once when she has
medium expertise τ2

m breaks to the links to those who have never been observed. Consider the
following sequence of signal variance realizations and associated links:

t
0
1
2

τ2
1t τ2

2t τ2
3t τ2

4t τ2
5t

2 3 4 4 4
3 2 4 4 4
4 4 4 2 2

λt (1) λt (2) λt (3) λt (4) λt (5)

2 1 1 1 1
2 1 1 1 1
2 1 1 1 1

At the end of period t = 1, each individual has observed somebody twice—as described above—
and all links that have not been used are broken. Therefore λt(i) = λ1(i) for each i and each t
thereafter.

The observational network for this example, which is the same in all periods, is shown
in Figure 6. It is characterized by inbreeding homophily in the larger group and het-
erophily in the smaller group.
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Now consider the same example but with greater correlation in perspectives in the
larger group.

Example 4. Suppose that all specifications and signal variance realizations are as in Example 3
except that ρ′1 = 1/2. Then the links formed are as follows:

t
0
1
2

λt (1) λt (2) λt (3) λt (4) λt (5)

2 1 1 1 1
2 1 2 2 2
2 1 4 5 4

Now, at t = 1, individuals 3, 4, and 5 switch to 2, because the correlation in priors allowed them
to learn about all perspectives in the larger group during the initial period. Since one observation
is not enough to break links in this example, individuals 3, 4, and 5 all switch to highly informed
targets from the smaller group in period t = 2. Now since the links to all previously observed
individuals become free, individual 3 targets out-group member 4 whenever the latter is more
informed than others in the population. Likewise, members of the smaller group also target each
other in the long run whenever they are highly informed.

Figure 7 shows the third period network in this example. Since this network can arise
with positive probability in all subsequent periods, we see lower levels of long run ho-
mophily in the larger group despite a higher level of correlation in perspectives.

1

2 3

4

5

Figure 7: Informational network after three periods when ρ1 = 1/2 (Example 4).

Examples 3–4 illustrate a more general problem of divided attention that makes it
difficult to break other links. When ρ1 = 0, in the first two periods, all individuals focus
on individual 1, and she focuses on 2. In particular, individuals 3, 4, and 5 do not switch
to the better informed individual 2 at t = 1—because the variance of the perspective of 1
goes below 0.477 at the end of t = 0 and leads to a lower noise for 1: γi1 < 7.3 < 8 = γi2

for i > 2. This results in breaking all the links to group 2. Indeed, since σ2
1 (3, 1) ∼= 0.213,
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at t = 2, for individual 3, the noise in individual 1’s opinion is lower than the noise in the
opinions of the members of group 2: γ31

∼= 7.1 < 8 = γ34 = γ35. Since 1 has the lowest
possible expertise while the members of group 2 have the highest possible expertise levels
in this case, she will never target them after that. Likewise, they will not link to each other
either.

In contrast, when the correlation in group 1 is higher, individuals learn more indirectly
about the perspectives of the other members of the group in the initial period of obser-
vation. This should make members of the larger group more attractive targets in later
rounds, for any given history of past observation. However, the observations are endoge-
nous in our model. When there are many attractive targets, individuals lose focus and
divide their attention between these targets. As a result, they may not learn about any of
them sufficiently well to focus on this group in the long run. Specifically, in the above ex-
ample, when the correlation is 0.5, individual 3 learns a lot about 2 from observing 1: the
variance of her belief about 2 goes below 1.05. Now in the second round, as 2 becomes
better informed than 1, she switches to 2. She now does not know either of them well
enough to focus on them in later periods. Indeed, at the end of period 1, the variance of
her belief about 1 and 2 is approximately 0.42. As a result, in period 2, the noise variance
of the opinions of 1 and 2 is approximately 10.7, higher than the noise variance of 8 in the
opinions of the members of other group. She switches to the latter individuals as a result,
resulting in lower levels of homophily thereafter.

Examples 3–4 show that intuitions about the effects of greater correlation can fail as
one moves to a multi-period setting. The same is true for intuitions about group size. In
the initial period, a larger group is more likely to exhibit homophily, but the following
example shows that this too does not hold generally, again because of divided attention.

Example 5. Suppose that all specifications and signal variance realizations are as in Example 4
except that individual 2 is removed from the population. Then the links formed are as follows:

t
0
1
2

τ2
1t τ2

3t τ2
4t τ2

5t

2 4 4 4
3 4 4 4
4 4 2 2

λt (1) λt (3) λt (4) λt (5)

3 1 1 1
3 1 1 1
3 1 1 1

Now, without individual 2, individuals 3, 4, and 5 all focus on 1 in the first two periods;
their attention is not divided. Consequently, in the long run, individual 1 targets 3 and
everybody else targets 1, leading to extreme homophily and informational leadership by
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Figure 8: Informational network after three periods when ρ1 = 1/2 and individual 2 is removed

(Example 5).

group 1. This is despite the fact that it is now smaller, and hence less likely to contain the
globally best informed individual in any given period.

6 Simulation Results

To identify some additional properties of long run observational structures, we simulated
the model 1000 times for a given individual i under binomial distribution for various
values of q and common correlation parameter ρ = ρ1 = ρ2. We start with the case of
(roughly) equal sized groups, and then consider the consequences of asymmetries.

6.1 Non-Monotonic Homophily

In our first set of simulations, we consider an individual with 10 other members in her
own group and 10 members in the other group, so baseline homophily is 0.5. We took
τ2 = 1 and τ2 = 1/2, so that the signal of a low-expertise individual is as informative as
his prior while the signal of a high-expertise individual is twice as precise. The resulting
critical variance is σ2 = 2, and we took σ2

0 = 4. We have α
(

τ2, τ2
)

= 4, so it takes

two observations for σ2
j (i, t) to drop to the critical level σ2. The number of observations

needed to break a link depends on ρ and will typically be much higher; with minimum
steps, it takes 14 repeated observations to break the links to unobserved individuals when
ρ = 0.

In Figure 9, we present the average number of i’s long-run experts from each group,
and the corresponding levels of inbreeding homophily. On the left panel, we take q =
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Figure 9: Top: Number of long run experts from own group (blue) and other group (red) as a

function of ρ for three values of q. Bottom: corresponding levels of inbreeding homophily.

0.1 so that it is not common to have a high expertise. In this case the number of long-
run experts is relatively high from each group, for most values of ρ. For example, the
individual has about 5-6 experts from her own group and 3-4 experts from the other
group when ρ is less than 0.4. As ρ rises, the number of experts from each group sharply
rises. At around the cutoff ρ, she consults almost everybody from her own group and
8 individuals from the other. This is because since q is low, the probability of the same
individuals having high expertise repeatedly is low, and this allows her to experiment
with multiple sources before any links break. The number from the other group sharply
drops to 0 at the cutoff ρ, after which she exhibits extreme homophily.

It is remarkable that the number of long-run experts from the other group is also very
high when ρ is in between ρ and ρ. At this level, there is good chance that nobody in her
group has high expertise but there is somebody with expertise in the other group—with
approximate probability 0.23. In those instances she gets to observe someone from the
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other group. When ρ is high, she learns not only about her targets but also about the
others from that group, leading her to observe many of them in the long run.

We plot the results for q = 0.3 on the middle panel. While the number of long-run
experts from her own group remains similar to the case of q = 0.1, the number of experts
from the other group declines substantially, remaining below 2 for all values of ρ. The
probability of the same individuals having high expertise repeatedly is still low, and she
still gets to experiment various members of her own group before her links to them break.
However, the probability of nobody in her group having high expertise is now very small
and hence she gets to observe the other group’s members with small probability of ap-
proximately 0.03. Her links to the other group breaks quickly as a result.

We plot the results for q = 0.5 on the right panel. Now, she exhibits virtually extreme
homophily at all correlation levels, and the number of experts from her own group is also
low when ρ < ρ.

The indices of inbreeding homophily are shown in the bottom panel of the figure.
The value of the index is mainly determined by probability q of high expertise level, and
it increases with q. When q = 0.5, the homophily index remains near 1 at all correlation
levels, exhibiting near extreme homophily. When q drops to 0.3, homophily remains high.
The homophily index starts at 0.92 for ρ = 0 and mildly increases with ρ until ρ = ρ, then
it takes a dip in between ρ and ρ and sharply increases to 1 at ρ. When q drops further
down to 0.1, the homophily index exhibits a similar non-monotone pattern albeit at lower
levels. In fact, for an intermediate range of ρ values, we have approximately baseline
homophily.

This non-monotonicity is due to the effect of indirect learning about the other culture
when ρ > ρ. By Proposition 4, when ρ > ρ, indirect learning leads her to link to all
members of a group if she observes sufficiently many of them. In particular, when ρ >√

ρ, she will link to everybody in her own group, and she would also link to everybody
from the other group if she learns even one of them well. When q is low, this increases
the number of long-run experts from the other group, without affecting the already high
number of experts from own group, resulting in a sharp drop in homophily towards
baseline levels.

The binomial expertise distribution is somewhat special in that it puts all the probabil-
ities to extremes. When q is moderately high and ρ is small, this biases the results in favor
of homophily because small initial familiarity due to shared culture gives a large advan-
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tage to own group members, as it only matters whether an individual has high or low
expertise. Although analytical results here extend to arbitrary distributions, quantitative
results could be less extreme for other distributions.

6.2 Group Size Effects

The numerical results above assumed that the groups were of roughly equal size, with
the level of baseline homophily being 0.5 for those in the (slightly) larger group. When
there are sharp differences across groups in size, asymmetries in the level of inbreeding
homophily arise.

Figure 10 shows indexes of inbreeding homophily when the total population is 21 (as
in the previous section) but groups are of size 16 and 5 respectively. Again we consider
three different values of q. In all cases individuals in the larger group have much higher
levels of inbreeding homophily, and these levels are increasing in q. When q is small,
the smaller group can exhibit heterophily in expectation for values of ρ close to ρ. This
is because high expertise is rare, and it is likely that the only targets with high expertise
in the initial period are found in the larger group. Given the positive feedback effects
that arise through the learning of perspectives, members of the smaller group can end up
relying disproportionately on the larger group for sources of information.

That is, those in a small minority reach a better understanding of majority group mem-
bers than the reverse. This is a common feature of many aspects of culture, but the infor-
mational channel explored here offers a novel perspective on the phenomenon.

7 Conclusions

The basic premise underlying our analysis here is that members of an identity group
share a common worldview, and filter information about the world in a similar manner.
We have modeled these worldviews using heterogeneous prior beliefs, assumed to be
correlated within but not across groups. When seeking information about the world, this
leads individuals to exhibit an initial preference for observing the opinions of in-group
members, since these opinions are easier to interpret. But this bias need not overwhelm
differences in the quality of information: outsiders may be observed if they have signifi-
cantly more precise signals than insiders. And observing outsiders gives rise to additional
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Figure 10: Inbreeding homophily with groups of size n1 = 16 (top row) and n2 = 5 (bottom), for

q = 0.1 (left panel), 0.3 (center), and 0.5 (right).

positive feedback effects, as one learns not just about a different individual but also about
a different culture.

A natural process of symmetry-breaking, arising from differences across observers
in their own quality of information, can give rise to heterogeneity within groups in ob-
servation patterns. The extent of this heterogeneity is constrained, however, and under
certain conditions results in a sharp separation of individuals into two categories: those
who exhibit extreme homophily, and those who shed all initial biases towards in-group
members. This bimodality of observation patterns is potentially testable using data on
communication networks.

Our analysis also makes clear that the extent of homophily depends in systematic
ways on the degree of correlation in perspectives, though not always in the manner one
might expect. Homophily is lowest at intermediate levels of correlation, and small groups
can exhibit heterophily in expectation.

Many other questions related to group identity and informational networks could po-
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tentially be explored using the framework developed here. For instance, one might ex-
plore the possibility of an informational gradient—with members of larger groups seek-
ing information from a larger set of sources—analogous to the friendship gradient found
in social networks. This seems to be a particularly promising direction for future research.
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Appendix

Proof of Proposition 1. Suppose σ2
0 < σ2 and consider any period t and any pair of dis-

tinct individuals i and j. We will obtain a strictly positive uniform lower bound on the
probability that i links to j in period t. Then, i links to j infinitely often almost surely,
showing that j ∈ Ji and that Ji = N \ {i} as claimed. To obtain the lower bound, note that
σ2

j (i, t) ≤ σ2
0 while σ2

j′(i, t) > 0 for all j′ /∈ {i, j} and all histories. Suppose that τjt = τ and
τj′t = τ for all j′ /∈ {i, j}. Then

γij(t) = τ2 + τ4σ2
j (i, t) < τ2 + τ4σ2 = τ2 < τ2 + τ4σ2

j′(i, t) = γij′(t).

Hence i links to j under these expertise realizations. The same is true for an open set of
expertise realizations sufficiently close to these. There is a positive lower bound on the
probability of the open set, providing a lower bound on the probability that i links to j at
any given period.

Proof of Proposition 2. Suppose σ2
0 > σ2, in which case β(σ2

0 ) is well-defined and finite. It is
easily verified that in the initial period, there is a positive probability that for each group
k and each i ∈ Nk we have λ0(i) ∈ Nk. That is, there is a positive probability that in the
initial period, each individual links to a member of their own group. (This will happen
if the four best-informed individuals in the population all have sufficiently similar levels
of expertise, and two of these are in the first group while the other two are in the second.
There is a strictly positive lower bound on the probability of this event.) Suppose that
the first period network does indeed satisfy λ0(i) ∈ Nk for each i ∈ Nk. Note that the
likelihood that this same network will form again in the second period is also positive,
as is the probability that it will form in each of the first s periods for any given, finite s.
Suppose that the same network (with λ0(i) ∈ Nk for each i ∈ Nk) forms in each of the first
s periods. If s is sufficiently large, then for each i ∈ N, we reach

σ2
λ0(i)

(i, s) < β(σ2
0 ).

At this point all links from i ∈ Nk to all individuals outside Nk break, and i subsequently
exhibits extreme homophily. We have shown that this is a positive probability event.

To prove the second claim, consider any group k with ρk > ρ. Then, for each pair i and
j such that i, j ∈ Nk we have

σ2
j (i, 0) = σ2

0 (1− ρ2
k) < β(σ2

0 ).
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Hence the probability that i links to any j′ /∈ Nk is zero in the initial period. It is clearly
also zero in all subsequent periods.

Proof of Proposition 3. Suppose i observes an in-group member j at period t. By (8),

1/σ2
j (i, t + 1) ≥ 1/σ2

j (i, t) + 1/α(τ2, τ2), (21)

where σ2
j (i, 0) = σ2

0
(
1− ρ2

k
)
. If i observes j repeatedly, the variance σ2

j (i, t) eventually
drops below β

(
σ2

0
)
. If i has not observed any out-group member in the meantime, her

links to all out-group members break permanently at that point. Using the inequality
in (21), one can easily show that the number of repetitions for this to occur is at most
max {dκe , 0} where κ is as defined in the proposition. If ρk ≥ ρ, we have κ ≤ 0, and
extreme homophily with probability 1 (see Proposition 2). If not, then κ > 0, and some
repetition may be needed in order for all out-group links to break. The extent of this
repetition depends on the distance of ρk from the cutoff ρ.

To obtain our lower bound, consider the case of binary expertise. In the initial pe-
riod, since σ2

j (i, 0) = σ2
0
(
1− ρ2

k
)
> σ2

0 , individual i links to an in-group member when-
ever there is any such individual with high expertise, which occurs with probability
1− (1− q)nk−1 ≥ q, or there is no individual with high expertise in the population, which
occurs with probability (1− q)n−1. She links to an out-group member otherwise, which
happens with probability (1− q)nk−1 − (1− q)n−1.

Suppose that i has linked to an in-group member j initially, and consider the prob-
ability that she will link to j again in the next round. Since she is now most familiar
with j, she will link to j if j has high expertise, which happens with probability q, or
nobody has high expertise, which occurs with probability (1− q)n−1. Since she is least
familiar with out-group members, she links to an out-group member with probability
(1− q)nk−1 − (1− q)n−1 as in the previous case. With the remaining probability she links
to a different in-group member, and learns more about that individual, as well as about j
and other in-group members.

As i continues to observe only in-group members, the probability that she links to the
most familiar in-group member remains pin = q+(1− q)n−1, and the probability that she
observes an out-group member remains pout = (1− q)nk−1 − (1− q)n−1, until the latter
probability drops to zero. But the latter probability must drop to zero after max {dκe , 0}
observations of the most familiar in-group member. To see this, suppose that i has not
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targeted any out-group member so far and

min
j∈Nk\{i}

σ2
j (i, t) ≥ β(σ2

0 ).

The probability that i will target some jt ∈ Nk\ {i} with σ2
jt(i, t) = minj∈Nk\{i} σ2

j (i, t) is

at least pin = q + (1− q)n−1 while the probability that she targets an out-group member
is pout = (1− q)nk−1 − (1− q)n−1. Thus, probability that she targets a most-familiar in-
group member T times without targeting any out-group member is at least(

pin

pin + pout

)T
,

where we allow i to target some other in-group members in between. But after T =

max {dκe , 0} observations, we have

min
j∈Nk\{i}

σ2
j (i, t + 1) < β(σ2

0 ),

and the links to out-group members are all broken. Specifically, if i targets jt′ at period t′,
we have

1
minj∈Nk\{i} σ2

j (i, t′ + 1)
≥ 1

minj∈Nk\{i} σ2
j (i, t′)

+
1

α(τ2, τ2)
.

Thus, if i has targeted the most-familiar in-group member jt′ for max {dκe , 0} times, we
have

1
minj∈Nk\{i} σ2

j (i, t + 1)
≥ 1

σ2
0
(
1− ρ2

k

) + max {dκe , 0}
α(τ2, τ2)

>
1

β
(
σ2

0
) .

Hence the probability of extreme homophily is at least

p∗ =
(

pin

pin + pout

)max{dκe,0}

as claimed.

Proof of Proposition 4. The claim follows from the analysis in the text. Indeed, take any
history in which mik ≥ m where σ2

0 /σ2 < φ (m, ρk). Then, along that history, for any
j ∈ Nk\ {i}, σ2

j (i, ∞) ≡ limt→∞ σ2
j (i, t) ≤ σ2

0 /φ (mik, ρk) ≤ σ2
0 /φ (m, ρk) < σ2. There then

exists t∗ such that σ2
j (i, t∗) < σ2. Since the probability of histories in which i does not link

to j infinitely often is zero, this completes the proof.

Proof of Proposition 5. It suffices to show that the bound in the proposition applies to the
probability conditional on that i has observed exactly m individuals from group k one
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or more periods. She may have also observed some other individuals from the other
group k′. Denote the set of previously observed m members by N∗k . For each t, let
Jt = arg minj∈N\{i} σ2

j (i, t) be the set of individuals with whom i is most familiar at time
t. Recall that the probability of i targeting some jt ∈ Jt at t is at least q. Moreover, since
σ2

j (i, t) < σ2
j′(i, t) for any j ∈ N∗k and any j′ ∈ Nk\N∗k , the probability of i targeting any

j′ ∈ Nk\N∗k is at most (1− q)m. (This probability is often lower because there could be
members j′′ from the other group with σ2

j′′(i, t) < σ2
j′(i, t)). Thus, the probability of target-

ing the most familiar (time and history-dependent) individuals jt ∈ Jt for T times before
targeting any j′ ∈ Nk\N∗k is at least

(
q/
(
q + m (1− q)m))T. Moreover, by inequality in

(21), after such observations, we have

min
j∈N\{i}

σ2
j (i, t) ≤

σ2
0 α(τ2, τ2)

(T + 1) σ2
0 + α(τ2, τ2)

where we use the fact that each jt ∈ Jt has been observed at least once when we condi-
tioned. For T = κ, the expression on right-hand side is less than

β ((1− ρk) σ2
0 ),

and thus all the links to j′ ∈ Nk\N∗k are broken.
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