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Abstract

We build a linear-quadratic model to analyze trading in a market with pri-
vate information and heterogeneous agents. Agents receive private taste/inventory
shocks and trade continuously. Agents differ in their need for trade as well as
the cost to hold excessive inventory. In equilibrium, trade is gradual. Trading
speed depends on the number and market power of participants, and trade
among large market participants is slower than that among small ones. Price
has momentum due to the actions of large traders: it drifts down if the sell-
ers have greater market power than buyers, and vice versa. The model can
also answer welfare questions, for example about the social costs and benefits
of market consolidation. It can also be extended to allow private information
about common value.

1 Introduction.

A market with heterogeneous investors — large institutions, small retail investors,
liquidity providers and high-frequency traders — presents many puzzles. What de-
termines the speed of trading? What is the link between microstructure and time
series properties of prices, such as momentum and excess volatility?” What is the
price impact of large trades, and how much does it matter for optimal execution of
transactions? What about phenomena such as front-running — are they detrimental
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to welfare? What about high frequency trading? Is it justified that in practice, cer-
tain market-makers are willing to pay to distinguish institutional trading flow from
that of retail investors?

We attempt to build a game theoretical framework to analyze these phenomena.
Specifically, we model a market in which the price of a risky asset follows a Brownian
path as a result of trades of individual market participants. Trade can be motivated by
various reasons, such as risk sharing in Vayanos (1999) or because of heterogeneous
beliefs as in Kyle, Obizhaeva and Wang (2014). Players have private information
about their personal desire to buy or sell at any price, and they trade, optimizing
between the price at which they trade and the costs of delayed execution. Thus,
from the perspective of an individual, our decision makers are similar to a trader
in Almgren and Chriss (2001). This classic financial mathematics paper solves the
problem of a trader who decides how quickly it wants to sell a desired quantity, facing
the trade-off between price impact and uncertainty in the execution price. Fast sales
lead to a low execution price, but waiting exposes the player to price risk that the
player is trying to offload. This problem is motivated by basic empirical observations
about the price impact of trade.

While individual players in our model face a problem similar to that of Almgren
and Chriss (2001), we aim to derive the properties of the market that individuals
face from the interaction of individual behaviors. That is, we show that these market
properties can be derived in a game theoretic framework and we link the price impact
of trades as well as time series properties of prices to the composition of the market.

The price properties we derive can be broadly classified as “on-equilibrium” and
“off-equilibrium” (path). On equilibrium, we would like to know how prices behave
when everybody follows their optimal strategies. One important on-equilibrium prop-
erty we derive is momentum, which depends on the relative competitiveness/market
power of current buyers and sellers. Off equilibrium, putting ourselves in the shoes
of an individual player, we would like to know how prices would respond if the player
traded differently, not according to the optimal strategy. Of course, the optimal
strategy depends on the off-equilibrium properties of prices, i.e. the price impact that
various trades would have. That is, equilibrium strategies have to be optimal given
the properties of prices off equilibrium. Off equilibrium, we show that as (assumed)
in Almgren and Chriss (2001), trades have “instantaneous” and “permanent” price
impacts, i.e. price depends on the trading rate as well as the total amount bought or
sold. In addition, depending on market composition, there may also be “transient”
price impact, i.e. the temporary impact on the price of the total amount sold. Tran-
sient impact exists empirically, and in our model it arises because transactions by an
individual player trigger trade among other players]T]

The dichotomy between on and off-equilibrium phenomena translates to the types
of data that one needs to test various hypothesis empirically. On equilibrium, one

!For empirical research on price impact in equity markets see for example Almgren et al (2005),
Moro et al (2009) and a summary in Bouchaud (2010).



simply needs the time series data of actual market transactions. The data for off-
equilibrium phenomena is much less readily available, and ideally would involve ex-
periments by banks that record how prices react depending on the rates of trade.

Game-theoretic justifications of price impact go back to the classic paper of Kyle
(1985), where the market maker tries to filter out private information from the com-
bined trades of noise traders and an informed trader. Kyle’'s “lambda” captures
the permanent price impact of trades based on the private information that they
carry. A large literature that uses noise traders includes Kyle (1989), Back (1992)
and Caldentey and Stacchetti (2010).

Our model builds upon the seminal paper of Vayanos (1999), which models a
symmetric market of fully rational traders who have private information about their
desire to buy or sell. It is a finite market in which trade takes time, as players signal
their supply or demand by the rate of tradingf| Slow trade leads to inefficiency, as
transactions have both instantaneous and permanent price impacts. On equilibrium
prices have no momentum when there is symmetry among players. A number of
recent papers work within such a symmetric framework. Du and Zhu (2013) study
the impact of the frequency of trade on efficiency, and explore how the speed of trade
depends on the amount of private information in the market. Kyle, Obizhaeva and
Wang (2014) introduce belief heterogeneity, study the speed of trade and observe
phenomena related to “flash crashes.”f]

We introduce asymmetry among players into this class of models. Players dif-
fer in their risk capacity parameter that determines their impatience to trade. We
refer to traders who prefer to trade quickly due to a high holding cost as “small”
and players who are willing to wait and tolerate execution risk as “large.” As we
show, heterogeneity of traders brings many important issues to the table, but also
significantly complicates the modeling task. Unlike in symmetric models, price is no
longer a sufficient statistic about the private information of others; to optimize, each
player wants to know the distribution of trades across large and small players. When
this information is unavailable, optimization of individual players involves a filtering
problem to infer the distribution of supply and demand from price behavior, and to
forecast future price momentum from that distribution. With awareness that such
a framework leads to a host of new phenomena that may be difficult to disentangle,
we design a trading mechanism based on the assumption that players know and can
condition on the trades of all other participants.

Our model of trade for asymmetric environments coincides with that of Vayanos
(1999) in symmetric case, but otherwise corresponds to the assumption that trading
flow is not anonymous. Our model of trade presents a simple analytical framework
- we derive a fully separating equilibrium in which players signal their private in-

2That traders signal by choosing how much to trade is familiar from the static models like Leland
and Pyle (1977) or Myers and Majluf (1984).

3A few papers also study static trading with heterogeneous strategic traders; see for example
Lambert, Ostrovsky and Panov (2016) and Malamud and Rostek (2014).



formation about their desire to trade through individual trading flows. We think of
our model as an important benchmark - through which we can identify a host of
phenomena without the complications of belief formation. Also, as in any separat-
ing equilibrium, our characterization is invariant to the distribution of shocks to the
players’ trading needs, and it is even invariant to the correlation among the shocks.
A tractable framework for the analysis of markets with heterogeneous participants is
a methodological contribution of this paper.

An important implication of heterogeneity is that, when trading is not anonymous,
not only trading speed but also price impact depend on player size. Patient/large
players are willing to trade slowly, as for any quantity they want to sell they have lower
holding costs than small players. Hence, trades of large players are more “toxic:” they
generate price momentum that is detrimental to anyone on the other side of the trades.
While these observations hold regardless of whether the source of trades is observable,
observability implies that the trades of large players have larger instantaneous price
impact, i.e. the same quantity generates a bigger change in price. In practice this
leads to a variety of behaviors, as players try to obtain information about the source
of trade. In the popular press, Patterson (2012) and Lewis (2014) document how
high-frequency traders use “latency tables” and “router signatures” to identify the
source of flow. Certain market makers, such as Citadel, pay retail brokerages for
flow from their investors - the knowledge about the source of the flow seems hugely
valuable. Phenomena such as technical front-running are related to identifying large
traders.

We show that when the source of trades is observable, instantaneous price impact
has a large sensitivity to player size. A trader who is 10 times as large as another
trader can have instantaneous price impact that is 3 times as large. Of course, in
practice techniques such as splitting of orders allow large traders to hide flow behind
that of small traders at least temporarily. However, recent developments in high
frequency trading and the general push for transparency in markets move reality
closer to our modelE] The question about the role of transparency is important, but
it would be a subject of a separate paper.

Since we explicitly model preferences of all market participants, our model can be
a laboratory for studying welfare. Here we find several surprising results. First, with
transparency, market power is bad for individual welfare. Market power refers to the
ability of a large institution to coordinate its trades, avoiding the competition that
would occur if correlated trades were initiated by many dispersed traders. Market
power implies slower trades, but it also leads to higher price impact in a transparent
market of rational traders who can identify a “whale in the ocean.” We present a
set of results, demonstrating that large players may prefer to commit to faster trade,
and would benefit from being split into smaller traders. These results potentially

4For example, NYSE has a set of liquidity programs that allows retail orders to be
identified as such, in order to generate greater transparency and price improvement - see
www.nyse.com/markets/liquidity-programs.



explain the frustration of large institutions with high frequency traders who try to
benefit from identifying large traders, described in Lewis (2014)E] They suggest that
transparent markets may skew the field in favor of small traders, whereas in opaque
markets large players are able to hide trades behind those of small traders successfully,
and benefit from market power[]

This paper is organized as follows. Section 2 presents the linear-quadratic model of
traders’ preferences, a conditional double auction, and equivalence results for different
representations of trading rules. Section 3 describes equilibrium conditions and intro-
duces a model of a competitive fringe. Section 4 provides closed-form characterization
of equilibrium in the case of a single large trader and a competitive fringe, discussing
on and off path dynamics, as well as welfare properties of the market. Section 5
discusses the general case of N asymmetric traders and includes approximations to
equilibrium strategies. It also expands discussion of technical front-running. Section
6 briefly illustrates how the analysis could be extended to common values. Section 7
discusses our findings and Section 8 concludes. Some of the proofs are in the main
text of the paper and some of them are relegated to the appendix. The appendix
also contains a microfoundation of linear-quadratic preferences with a CARA-utility
maximizing traders.

2 The Model.

Consider a market for a single divisible asset. There are either N large traders, or
N — 1 large traders and a “competitive fringe” of infinitely many small players. We
model the players’ incentives to trade by following financial mathematics literature.
While that literature takes the price impact as given, in our model the equilibrium
endogenously determines the magnitude and form of the price impact. We start
with a brief review of a classic paper from this literature, in order to facilitate the
interpretations of the stylized features of the linear-quadratic model that we build
later.

Background: Price Impact and Optimal Execution. Almgren and Chriss
(2001) build an elegant model of optimal execution of transactions, which takes into
account the trade-off between average price and execution risk. The trader would like
to liquidate X shares and the execution price is modeled as

t
ﬁt:pwozt—fqt—A/qsds, (1)
0

®Budish, Cramton and Shim (2015) analyze the race for speed in financial markets. Their insights
about the effects of high frequency trading are unrelated to ours since the two models feature very
different trading frictions (speed vs. private information).

6While the impact of transparency on the welfare of large traders relative to small traders seems
clear, the overall impact may be ambiguous. Certainly, identification of large traders that forces
them to trade slower may reduce market liquidity overall.



where py is the price at time 0 and z; is a Brownian motion (so ¢ is the volatility of the
price). The selling rate ¢; has an instantaneous price impact of I and the permanent
price impact of A Once the transaction is completed, i.e. Xy = fOT q; dt, the revenue
equals y = fOT prq: dt. The objective is to maximize E[y] — v Var[y]. This objective
function can be justified as a quadratic approximation of a concave utility function:
if the trader consumes his wealth w plus y at time 7', receiving utility u(w + y), then

Blu(uw + )] = uw) + o' () Ely] + ) Varly] + of?)

An equivalent way to write the objective function is in terms of quadratic holding
costs, as shown by the following lemma.

Lemma 1 For deterministic strategies qs, s € [0, T that liquidate the amount
T
XO = fo ds dSa

T T
Ely] — v Varly] = Ely] — vo°E U X} dt} , where y =/ Pegedt  (2)
0 0
1s the seller’s revenue.

Proof. Total revenue equals

T
Y= E[Z/] +/ X odz,
0

where the integral measures the unexpected capital gains and losses on the remaining
holdings (notice that if we had o = 0, then the path of prices would be deterministic
for any deterministic strategy, so y = E[y]). Hence,

T T
Var[y] = 0 Var {/ X dzt} =0’ E {/ X? dt} )
0 0

where the last step is just the classic Ito isometry. This implies (2)). =

In our model below, we model the player’s preferences via quadratic holding costs.
Thus, preferences in our model are similar to those of Almgren and Chriss (2001),

and they approximate risk-averse utility. We microfound quadratic costs further in
Appendix AE|

"Parameter A is analogous to Kyle (1985)’s lambda, as it measures the sensitivity of price to the
total quantity sold.

8We should also note that the characterization of optimal trading in Almgren and Chriss (2001)
holds in the class of deterministic strategies, but not in the class of stochastic strategies (which
allow the traders to improve upon the objective E[y] — yVar[y] by “burning money”). However, for
preferences expressed in terms of quadratic holding costs, the deterministic strategy is optimal even
when stochastic strategies are allowed.



Our Model: Preferences and Shocks. Our model is consistent with this
framework - each of our IV players has private information about their desire to buy or
sell and chooses how to execute its tradeﬂ Players have quasilinear utilities in money
and quadratic holding costs, as in . Player ¢’s desire to buy or sell is captured by
a private taste shock £ € R - the holding cost is quadratic in the difference between
player i’s position 2! and the “bliss point” & € R — i.e. the holding cost is

b; .. )

-5 (@ -&)" (3)
This formulation is the same as in Bank, Soner and Vo (2016) and Almgren and
Li (2016), who capture the costs of an imperfect hedge, except that we also assume
that players discount payoffs at rate r > 0. There are many interpretations.
The trader may be a hedge fund manager whose overall risk exposure can affect the
optimal holdings of the asset being traded. Likewise, firms can trade to hedge their
commodity price or currency risk exposure. Alternatively, as in Kyle, Obizhaeva and
Wang (2014), shocks to & could be belief shocks: the trader’s beliefs about the asset’s
“alpha” may change and that would affect his optimal holding of the asset. Finally, if
traders are brokers executing trades on the behalf of their clients, then & can reflect
the inventory held by the broker.

Parameter b° reflects the holding cost of player i. We interpret 1/b" as the “risk
capacity” of trader i. Players with a lower coefficient b* are “larger”: they can hold
larger positions away from their optimal point &/ at a lower cost. Conversely, players
with a higher coefficient b® are “smaller”, and therefore more impatient to trade
towards their optimal pointsm

We call X7 = 2! —¢! € R the inventory or allocation of player i. Inventories change
due to taste shocks and trades. Taste shocks have mean 0. For concreteness we take
the taste shocks to be Brownian, so that the vector of taste shocks follows

dé, = —¥ dZ,, (4)

where ¥ is an N x N matrix with full rank and Z is a vector of N independent
Brownian motions. Denote the selling rate of player i by —di!/dt = g/ € R. The vector
of selling flows q¢; = [¢}, ¢, ..., qY]" must satisfy market clearing, i.e. its coefficients
have to add up to 0. Due to taste shocks and trades, the vector of inventories
X=X XE ..., XN]T follows

9There is a single asset, but our model can be extended to multiple assets with correlated fun-
damental risk or even segmented markets, following the ideas from Malamud and Rostek (2014).

10As we discuss below, our notions of large and small traders represent the fraction of the asset
they hold under first-best allocation. In practice, player size can also be measured in terms of the
fraction of total volume that the player trades, a measure related to the sizes of inventory shocks
in our model. When we say “size” in the paper, we mean the former notion, i.e. risk capacity, as it
plays a crucial role in equations that describe equilibria. Shock sizes do not play as big of a role, as
separating equilibria do not depend on the distribution of shocks.



If units change hands at price p;, then the payoff of player i is defined as:

E [r /OOO et (—%i(x,f)ﬂptqi) dt] . (6)

This completes the description of preferences and shocks in our model. Given any
history of shocks and trades, equations and (@ give the players’ utilities. With
these preferences, we can consider various trading mechanisms, and we motivate the
particular mechanism we study in this paper in Section [2.1]

It is useful to interpret p; as the deviation of market price from fundamental value
dictated by the current microstructure frictions. With this interpretation, negative
values of p; reflect an overall selling pressure, and positive, a buying pressure. The
fundamental value itself may change with public news about future cash flows, and
quadratic holding costs in @ reflect the players’ risk aversion to this fundamental
riskH With this interpretation in mind, we refer to p; simply as “price,” even though
it represents a price discount or premium relative to a benchmark.

Furthermore, while we model inventory shocks to be Brownian and stationary for
concreteness, our equilibrium characterization applies to much wider shock structures.
The reason is full separation of types in equilibrium: players signal their allocations
through their trading rates ¢¢. Hence, trading dynamics remain the same even with
Poisson or non-stationary shocks, as long as the support assumptions required for
a separating equilibrium hold. Since utilities are quadratic in inventories, welfare
depends on the variance of shocks but not other details of their distribution. We use
continuous time to simplify some of the algebra, but most of our analysis and all our
economic intuitions apply to discrete-time versions of our model as well.

Preferences and shocks in this model are quite similar to the models in Vayanos
(1999), Du and Zhu (2013), and Kyle, Obizhaeva and Wang (2014). The main dis-
tinction is that we allow for asymmetry, i.e. we are mainly interested in the case when
the risk coefficients b’ are not identical. As we show, the asymmetry leads to new
price and trade dynamics in equilibrium.

First Best. The efficient allocation of assets is proportional to risk capacities.
First best requires that any vector of inventories X; should be immediately reallocated
so that each player i holds the fraction of total supply that is proportional to his/her
risk capacity, i.e.

b A . . .
X, = 7Xt, where X; = ZXZ and = Z 1/b; (market risk capacity) (7)
i=1

=1

Tn Appendix |A| we make this interpretation precise using a model with exponential utility.
Of course, players care about price changes due to both fundamental shocks and microstructure
risk. From the exponential utility model, we get the same set of equilibrium equations in the limit
when fundamental risk overwhelms microstructure risk, and slightly more complicated but similar
equations when endogenous microstructure risk that depends on trades is significant. Coefficients
b’ in our model correspond to the traders’ risk aversion in the exponential model, and holding costs
here correspond to the costs of exposure to fundamental/dividend risk in the exponential model.



If inventories were publicly observable and price were set to the marginal disutility
of holding a marginal unit of the asset at the efficient allocation (which is the same
across all agents), then the traders would be able to trade to the efficient allocation
immediately. Price at the efficient allocation is given by

d o —b; . b X} X
5 — —F —r(s—t) (i 2 0g| = 22t 2t
b=y M ’ g (Xeturds r 1B

(8)

Common Values. Note that in our model preference shocks can be correlated
across players (the off-diagonal elements of ¥ do not have to be zero). Since all
players know their private shocks, this is a model of correlated private values. It can
be generalized to allow for common values as follows. Suppose each player observes a
signal £ and his preferences depend on a linear combination of the signals of others.
Let F' be an N x N matrix with rows F, and 1’s on the diagonal. Let the agent’s
utility flow (including net revenue from trade) be

bi ~ 2 i
-3 (ﬁf — Eift) + qpe, (9)
If F; has non-zero entries in positions other than 4, trader ¢ cares directly about
the signals of others because they inform his preferences, for example because other
players may have information about the fundamental value of the asset.B
A simple example of an F' matrix is

F= E? — ¢ 1 : (10)
: : L
Ey b o 1

When ¢ = 0, it simplifies to our pure-private-values model. If ¢ = 1 it implies
a pure common value model (all players have the same taste equal to the sum of
all signals). We discuss at the end of the paper how our analysis could be extended
to these richer preferences (at least for ¢ small enough so that there is trade in
equilibrium), but for simplicity in this paper we analyze the (correlated) private
values case.

If F were asymmetric, traders would care about who they trade with to infer the
shocks of particular players: analogously to the Kyle (1985) model, where traders
would like to know if their counterparty is an informed or a noise trader. Perhaps
more surprisingly, we show that with strategic heterogeneous traders, even in a pure
private values setup agents want to know who they trade with.

12 A5 in our private values model, the trader also cares about the signals of others indirectly because
they are informative about future prices.



2.1 Mechanisms for trading.

We now turn to the determination of prices and trade flows. FExisting papers with
symmetric rational traders model trading through a double uniform-price auction, as
in Vayanos (1999) and Du and Zhu (2013), following the tradition of Kyle (1989).
However, in our setting, since players are not symmetric, such a mechanism leads
to a complicated fixed point problem which involves filtering. For reasons that will
become clear later, players would want to know not only the price but also information
about who else is buying and selling. They would be making inferences about the
distribution of supply and demand, across players of different sizes, from the dynamic
properties of prices and through other means.

We instead propose an alternative trading mechanism in which players observe the
flows currently being traded, with the goal of gaining the most insights about trading
dynamics in asymmetric markets in as simple a framework as possible. The benefit of
this framework is that we obtain a separating equilibrium, in which dynamics depend
only on the vector of risk coefficients b, and not the nature, correlation or variance
of the shocks. While the dynamics are simple, they are quite rich and capture many
of the phenomena that we set out to study.

The mechanism we propose is a uniform-price conditional double auction. We as-
sume that players observe the flows of all other players, or can condition their demand
functions on these flows. While we make this assumption out of necessity, there is
evidence that market participants in practice spend a considerable amount of effort
identifying the sources of trades. For example, brokers call each other to find out who
traded, and some market-makers pay discount brokerages for the flow specifically from
retail investors. Moreover, recently NYSE began allowing orders from retail investors
to be marked as such through the Retail Liquidity Program (RLP). Finally, recent
popular books like Lewis “Flash Boys” or Patterson’s “Dark Pools” describe strategies
used by high-frequency traders to determine likely sources of trades. Therefore, we
think that the conditional auction model not only helps us with tractability but also
helps us capture important real-life phenomena. Another interpretation of our model
is that it allows us to understand why traders care about the counterparty even if
they do not believe that the counterparty has private information about fundamental
value.

Formally, our conditional double auction format is defined as:

CONDITIONAL DOUBLE-AUCTION. At each moment of time t, each player i
announces a supply-demand function

p= 7t — Zﬂijqj

that gives the price at which the player is willing to trade, as a function of the selling
rates of all other players (with player i buying the net residual supply). The market

10



maker then determines the price p and the selling rates ¢’ from the system of equations

N
Zqizo, Vi, p:ﬁi—ZWijqj. (11)
i=1 i

A profile of strategies is stationary if the slopes of the demand functions 7% remain
constant over time, while the intercepts 7 may depend on the players’ inventories.
Furthermore, a stationary profile of strategies is linear if 7* = #* X" for an appropriate
constant 7, where X is player i’s inventory. Obviously, a linear stationary profile
such that 7" # 0 for all ¢ is revealing (i.e. fully separating). We are interested in
characterizing equilibria in revealing linear stationary strategies.E

We would like to comment on the determination the price-flow vector pair (p, q)
from linear stationary strategy profiles in a conditional double auction. There is,
unfortunately, a (non-generic) set of slopes {7%, i # j} such that there is no solution
(p,q) to (11)) (or multiple solutions exist) for some intercepts {7‘}. This leads to
indeterminacy. The solution must be unique at least for the intercepts 7 = 0, which
correspond to X = 0. As the following proposition shows, if the solution is unique
for 7° = 0, then it is unique for all intercepts {7‘} (this property amounts to certain
matrix being nonsingular). We call profiles with this property, and also the property
that #* # 0 for all 7 (so that each player’s allocation has effect on trade), acceptable.

Proposition 1 Given a set of stationary slopes {7, j # i}, the following two state-
ments are equivalent

1. equations have a unique solution (p,q) for @ =0,
2. equations have a solution for all intercepts {7'},

and imply that equations have a unique solution for all intercepts {7'}.

Proof. See Appendix. =

While the conditional double auctions provide an intuitive way to model price
formation in the market, it is easier to analyze price formation and trade dynamics
using a direct revelation mechanism that is strategically equivalent to the auction, as
we show below.

DIRECT REVELATION MECHANISM. A stationary linear mechanism is a pair
(P, Q) that consists of an N-dimensional vector P and an N x N matrix (), whose

13While we focus on fully separating stationary equilibria, we have investigated and are aware of
other possibilities. There are also non-stationary equilibria, under a broader set of strategies, with
periods of no trade, periods of continuous trade, and time points where a strictly positive number of
shares are traded. The players’ bids may not always reveal information about their inventories, and
some players may be excluded from trade. While a full characterization of equilibria is interesting,
it is beyond the scope of this paper.

11



columns add up to 0. In this mechanism, at each moment of time t the market
maker asks every trader to announce his inventory X}. The vector of announcements
determines the price p, = PX; and the vector of trading rates q; = QX;. We call the
mechanism truthtelling if telling the truth is an equilibrium of the mechanism when
announcements are observable[™]

Let us call a stationary linear mechanism (P, Q) acceptable if for any X in the
null space of @ (so that QX = 0), price PX = 0 only if X = 0. For an acceptable
mechanism, there is a one-dimensional space of allocations X that result in no trade
(i.e. it is the null space of @)) and all of these allocations result in different prices.

Proposition 2 The following statements about a mechanism (P, Q) are equivalent:
e it is acceptable;

o the matriz Q' obtained by replacing the first (or any other) row of Q with the
vector P 1s invertible; and

e if everybody tells the truth, the allocation X can be inferred by the outside ob-
server from the price p and the vector of flows q.

Proof. See Appendix. =

The last property implies that for acceptable mechanisms, the requirement that
announcements are observable in the definition of a truthtelling mechanism can be
replaced with the requirement that the price and all trading flows are observable.
That is, players can fully infer the inventories of others from the price and the trading
flows.

The following theorem provides a result about equivalence between acceptable
mechanisms and (linear stationary) strategy profiles in a conditional double auctionE

Theorem 1 There is a one-to-one map between
e acceptable profiles of linear stationary strategies and

e acceptable mechanisms, such that for any nonzero allocation X that results in
no trade, every element of X is nonzero

14That is, a truthtelling mechanism has to be ex-post incentive compatible.

15The one-to-one map implies that mechanisms that are not acceptable do not generate dynam-
ics that correspond to any profile of a conditional double auction. Conversely, for a profile in a
conditional double auction that is not acceptable, the map X — (p, q) is not well-defined.

12



that lead to the same map X — (p,q).

Moreover, consider a profile {(7*,7%), j # i} and a corresponding mechanism
(P,Q). Then for each player i, for any allocation X~ of other players, player i can
attain the same one-dimensional sets of price-trading flow pairs (p,q) by making a
report in a mechanism or by submitting a supply-demand function in a strategy profile
of a conditional double auction.

Proof. See Appendix. m

An immediate corollary of this theorem is that, since each player has the same
degree of control over prices and flows in corresponding mechanism and profile of
a double auction, a profile of a double auction is an equilibrium if and only if the
corresponding mechanism is truth telling.

Corollary 1 If an acceptable profile of a conditional double auction is an equilibrium,
then the corresponding direct revelation mechanism is truthtelling, and vice versa.

In all the equilibria that we construct below for every vector of reports of others,
trader i can find a report that implies he does not trade (because his trade is linearly
increasing in his report). For such equilibria ex-post incentive compatibility implies
that (ex-post) individual rationality holds.

From now on we will focus on truth telling direct revelation mechanisms, as the
representation in terms of P and () provides a convenient direct map from the players’
allocations to prices and flows.

3 Equilibrium Characterization.

We now derive equations that characterize trading dynamics under stationary linear
equilibria in our model. We cover the case of N large players first. At the end we
describe what happens when player N represents a continuum of players with total
risk capacity of 1/b", representing a competitive fringe.

Under mechanism (P, @), on the equilibrium path the vector of trading flows is
given by ¢; = QX and the price is p, = PX,. If player ¢ deviates and reports inventory
y + X} instead of X}, then the resulting price is PX; + p'y and the vector of trading
flows is QX; + Q'y, where Q' is the ith column of @, and p’ is the ith element of P.
Hence, from , the inventory vector follows

dX, = X dZ, — QX,; dt — Q'y dt. (12)

Under this law of motion, the value function f*(X) of player ¢ must satisfy the
HJB equation

X

X (PX 4 py)(@X + )~ (13)

rfi(X) = max

13



FUXNQX + Q) + 5t [ £, (X))

where Q' is the i-th row of Q, ¢” is the i-th diagonal entry of Q, f? is the gradient
of fi and fi is the Hessian. In a truth-telling mechanism, y = 0 must solve the
maximization problem in for all inventory vectors X.

Since is a quadratic optimization problem, the value function must be of
quadratic form fi(X) = XTA'X + k', where A" is a symmetric N x N matrix and &’
is a constant. Then the HJB equation becomes

)

r(XTAX + k) = max — (X N2+ (PX +p'y)(Q'X + ¢"'y) (14)
—2XTAQX + Q'y) + tr [EXT A7

Taking the first-order condition at y = 0, the HJB equation reduces to the follow-
ing system of equations

P'Q +q"P=2(AQ"", (15)
. . - PTQ 4+ (QHYTP ¢ , T pi
rA'+ A'Q + QA" = 9 Q(Q ) — %1“ and k'= i A [EX 4 ]7 (16)
T

where 1% denotes the square N-by-N matrix that has 1 in the i-th diagonal position
and zeros everywhere else.

We call matrix @) stable if it has no eigenvalues with positive real parts. Stability
implies that the transversality condition E[e~"X?] — 0 holds on the equilibrium
path. The following proposition formally registers the fact that appropriate solutions
of equations and indeed lead to equilibria.

Proposition 3 Consider any solution (P,Q, k', A',i = 1,...N) of the system
and (16) such that p* < 0 and ¢" >0 for alli=1,... N, and the matriz Q is stable.
Then, for all i if all other players tell the truth in mechanism (P,Q), it is better
to follow the truthtelling strategy than any other strategy that satisfies the no-Ponzi
condition Ele X2 — 0 That is, (P,Q) is a stationary linear equilibrium.

Proof. See Appendix. m

The trading game has degenerate stationary equilibria, in which some or all of the
traders are excluded from the market (i.e. the matrix @) consists of zeros in several
rows and columns). Other degenerate equilibria involve a splitting of the market in
which subsets of players trade among themselves, without trade across the subsets (so
that @ has zeros in some positions). We are interested primarily in non-degenerate
equilibria (in which @ has no zeros, so all players trade with each other), and would
like to understand their properties such as the speed of trade, price momentum, and
inefficiencies.

16Tf player 4 is allowed to violate the no-Ponzi condition, he can get infinite utility.
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Equilibrium with a Competitive Fringe. We define a competitive fringe as
a continuum of traders with a given finite risk capacity 1/b". A group of m identical
traders has risk capacity 1/b if each trader has utility function of the form @ with
risk coefficient mb?. Taking m — oo, we obtain a competitive fringe. We can include
a competitive fringe into our model and, if so, we designate trader N as the fringe["]

The HJB equation for the total utility f¥(X) of the fringe is given by the same
equation as the equation for large traders@ However, the first-order condi-
tion differs from , since fringe members can no longer affect the price with their
individual actions.

Proposition 4 If player N represents a competitive fringe, then prices and flows
must satisfy the first-order condition

rP+ PQ + b1V =0, (17)

where 1V denotes a row vector with 1 in the N-th position and zeros everywhere else.

Proof. See Appendix. =

If we right-multiply by X; it becomes rp; = —b" X}F + E[%|Xt]. This op-
timality condition has a simple economic interpretation: since any member of the
fringe has no price impact, he has to be indifferent between holding a marginal unit
of inventory and selling it to buy back a moment later. Selling allows him to collect
interest flow on the cash; holding implies extra inventory cost and expected capital
gains (if price change in expectation).

Unfortunately, the system of and (together with if player N rep-

resents the fringe) in general cannot be solved in closed form. We can solve the
equations numerically and provide several computed examples in Sections 4-6. We
also present one useful (and surprisingly accurate) approximation of the solution.
We should note also that we do not necessarily view equations and as
the end goal, as there are many meaningful modifications of this set of equations. We
can replace a single first-order condition to model the behavior of a competitive
fringe. Appendix [A] presents a model of risk-averse agents that care about both
fundamental and microstructure risk, and allows agents to have private information
about fundamentals. In addition, if someone believes that our model may be too

"When analyzing a model with a fringe we restrict attention to equilibria that are symmetric
with respect to the fringe members, so that the fringe can be treated as one (as we mentioned above,
our game has also degenerate equilibria in which some players are excluded altogether while others
trade only within subgroups).

18For clarity, we maintain the assumption that all fringe members get identical shocks, but total
utility of the fringe is given by f¥(X) even if individual fringe members get idiosyncratic shocks
of bounded volatility driven by finitely many Brownian motions. Any misallocation among fringe
members gets traded to efficiency infinitely fast.
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sophisticated to capture the behavior of various market participants, it is possible
to accommodate various forms of bounded rationality. For example, it is possible to
study what happens when some or all of the players ignore price momentum that
occurs as a result of asset allocation, or make incorrect assumptions about their price
impact.

We can solve two special cases explicitly. First is the case when one large trader
faces a competitive fringe. This case is particularly useful because it illustrates most
of the important properties of trading in asymmetric markets, including the existence
of price momentum, the form and heterogeneity of price impact across players, and
welfare implications of market power. The next section describes trading in a market
with a single large trader and competitive fringe. The second case we can solve
explicitly is when all players have identical risk coefficients - we present this solution
in Proposition

4 Trading between a Large Player and a Fringe.

The following proposition characterizes in closed form equilibrium trading between

one large player with risk capacity 1/b% and a competitive fringe with risk capacity
1/bF.

Proposition 5 Consider a market with N = 2, in which player 1 is an individual
large player and player 2 is a competitive fringe. Then in the unique nondegenerate
linear stationary equilibrium, equilibrium prices and the players’ trading rates are
characterized by vectors

1

=g o |

r bl /bt —1
b*, b+ 2b"] Qzﬁ{_b[ﬂf | } (18)

The welfare of the large trader and the fringe are characterized by matrices

bF —3bL —bL
L _
A = 20 (307 1 b7) [ b BF ] and
AF _ bF (bL)Q _bLbF
T2 (3bF + bF) (20F + bL) | —bEbE — ((bF)% + BbET + 5(bF)?)

Proof. See Appendix. =

From this closed-form solution, we can analyze several salient properties of equilib-
ria. We can divide properties into two groups: on and off equilibrium. On equilibrium
properties refer to what is seen by an independent observer - properties such as the
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speed of trade and price momentum. Off-equilibrium we can analyze what happens
when a single player deviates and changes the trading rate, i.e. we can analyze price
impact.

Speed of Trade and Price Momentum. Let us discuss the properties of P
and (. Matrix () has two eigenvalues, 0 and
rol +oF
2 bF

= (19)
with the corresponding eigenvectors being the efficient allocation and [1, —1]. That is,
there is no trade if players are already at the efficient allocation, and any misallocation
gets traded to efficiency at the rate (19). To understand why this is, we have to look
at player incentives by considering what would happen off equilibrium - we do this
in a bit. For now, let us observe that the speed of trade depends on how large trader
1 is relative to the rest of the market. When trader 1 is small, as the risk capacity
1/b% — 0, so the market gets closer to being fully competitive, trading speed
converges to infinity. It is interesting, however, that the trading speed here is always
bounded from below by /2, a limit approached as the large player gets large, i.e.
bt — 0.

The relationship between the speed of trade and market competitiveness is similar
to the result of Vayanos (1999) that in symmetric markets the speed of trade increases
with the number of players N, and is proportional to (N — 2)/2. Here, when the
large player is 1/N of market size, e.g. with 1/b% =1 and 1/b" = N — 1, then
becomes equal to 7 N/2. That is, the speed of trade is on the order of the inverse of
player size, and it is slightly greater when the player faces a competitive market than
players of equal market power. The property that the speed of trade increases as
the market power of individual players falls extends to asymmetric markets that we
consider in the next section, with the new result that there may be different trading
speeds in different market segments (i.e. matrix () has several positive eigenvalues).

The price is first best whenever players are at an efficient allocation X, i.e. in that

case PX = PX, where
-1 bEbt

o orbf bL[
is the first-best pricing vector. However, since P # P, price differs from first best
whenever players are not at an efficient allocation. The immediate implication of this
is price momentum: in the absence of further inventory shocks, price converges to the
first-best price at rate given by as players trade to the efficient allocation. With
shocks, this is the expected price path.

The direction of price momentum is connected with the property that the price is
skewed away from first best in favor of the large players. For example, at allocation
Xo = [1, —1] the price is

1, 1

1 207)?

-2
B0 B bt
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That is, the large player starts selling at a positive price, while the first-best price
is O.@ The sales of the large player produce a downward price momentum, in this
example directed from py to 0. Conversely, when the large player is buying, the
price has an upward momentum. In contrast, in the symmetric-trader environment
of Vayanos (1999), there is no price momentum: the price immediately adjusts to
first best following any shock. In general, as we explain in the next section, price
momentum is driven by the unequal market power of current buyers and sellers. The
side with greater market power gets a temporary price advantage.

Price Impact. With our trading model, we can study how a given sequence
of trades affects the price. Effectively, we provide a game-theoretic way of deriving
parameters of a model such as that of Almgren and Chriss (2001). It is also a result,
rather than an assumption, that price impact of the large player takes the form given
by when he is trading against a fringem In general, however, our model implies
price impact of a form that is more general than (). Trades also have a transient
price impact, which has an empirical counterpart (see discussion in the next section).

We should emphasize that the study of price impact is essentially an off-equilibrium
exercise. On equilibrium, a player has a uniquely optimal trading strategy. In prin-
ciple, however, a player can choose to trade in any way he/she desires. Given an
arbitrary set of trades, the market responds by forming incorrect beliefs about the
player’s inventory. The price that the trader receives is a function of market beliefs,
which are formed based on the trading speed. To solve for price impact following
a given path of sales by the large player ¢*, s € [0,t], we have to calculate market
beliefs following these sales, i.e. infer the shocks of the large player that would have
resulted in this path of trades. The following proposition provides the form of the
large player’s price impact in the model with a single large player and the fringe.

Proposition 6 The price impact of the large trader takes the form , where

bF
I = A ,
r r+ K

po=—AXS, and o=T11|2"] (20)

where Kk given by @) is the speed of trade and X represents the last row of ¥. Given
a sequence of sales q¥, s € [0,t], by the large trader, the fringe forms the belief about

19The deviation of the price from first best depends on the market power of the large trader.
Suppose b = 1, so that the marginal value of a unit to the fringe at allocation X = [1, 1] is 1/7.
The actual price is less than this: it can get as high as 2/(3r) when b — 0 (i.e. the large player has
tremendous market power) but it approaches first best when the market power of the large player
diminishes (i.e. as bY — o0).

20In the broader interpretation that p; is the deviation (due to microstructure forces) of the actual
price p; from the fundamental value, the volatility of the actual price p; would be greater than that
given by Proposition due to fundamental shocks. Thus, representation captures only the
microstructure shocks.
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the large trader’s inventory to be
bt (2
xt=t (;qf + Xf) | (21)
Proof. The volatility of inventory shocks to the fringe is |X*|, so we can express
t
XE =X+ 15" a0 [ gt s 22
0

where z is a Brownian motion. Now, given this allocation of the fringe, the relation-
ship between the allocation of the large player and the selling rate, from the first row

of @), is
r [ bF
it =5 (et - x7).

Then from the selling rate g7, the fringe infers that X/ is given by (21)).
Now, the price is given by PX, where (X}, X[') is given by and . There-

fore,
1 F

2

bt t 1267 1
— [ XF 4+ |xF / Lds | == ———_¢F,
r ( o HIET =+ Oqs s ror 3+bL/qut

Pt =

-~

X
This implies (20)). =

Proposition [6] confirms the intuitive guess that the permanent price impact A of
large player’s trades (i.e. Kyle’s lambda) is proportional to the risk capacity of the
fringe. On the other hand, the instantaneous price impact I depends also on the
risk capacity of the large player relative to the fringe. A player of larger risk capacity
trades more slowly to minimize price impact, hence any selling rate ¢~ signals a larger
inventory X} of the large player, according to (21). Hence, as the speed of trade x
slows down, the price impact rises.

Large risk capacity or “patience” gives the large player market power to obtain
better prices by selling slowly, but the expectations of the fringe of this behavior
raise the instantaneous price impact of the large player. This creates illiquidity in the
market, which is detrimental to the large player. Thus, “market power” bites back
by reducing liquidity. There is ample anecdotal evidence that large traders try to
hide information about their desire to buy or sell, e.g. by splitting orders into small
portions or waiting for the flow to trade against. In practice, therefore, to some extent
large traders are able to hide their flow behind that of small retail investors, although
other market participants, especially the high-frequency traders, seek to identify large
traders - see Patterson (2012).
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Our model of trade presents an extreme benchmark in which the entire market
knows immediately when a large player is trading, and the price reacts accordingly.
In this case, is market power beneficial to have? With transparency and rational
expectations, the cost of market power is illiquidity - the large player is forced to
trade slowly, even though he can take advantage of the current price in the short run.
We can ask several questions to explore market power. Would several small players
benefit by merging into a single large unit to coordinate trades? If the large player
could commit to a rate of trade in order to affect the expectations of the fringe and
the price impact, would the optimal rate be faster or slower than the equilibrium one?
We address these and other questions next.

4.1 Market Power and Welfare.

Our general conclusion, which is somewhat counterintuitive, is that in transparent
markets market power is detrimental. That is the cost of illiquidity that goes with
market power outweighs the ability to control the price by trading slowly. We illus-
trate this message via a sequence of three results, which we informally call “fractions”
as they hold when the large player has less than 1/2, 1/3 and 1/4 of market risk ca-
pacity, respectively.

First, we address the question of mergers. Suppose that in a fully competitive
market a portion of the fringe merges to form a single large player in order to coordi-
nate trades - would their welfare improve? To keep the experiment clean, we assume
that the fringe members who merge have identical shocks. Before the merger, these
fringe members trade in the same direction without taking into account price impact,
i.e. the effect of their trades on the price that everybody else is facing ] As a result,
the price adjusts immediately to first best, and fringe members trade to efficiency
instantaneously at that price. After the merger, the price adjusts gradually to first
best, i.e. the newly formed large player trades at prices better than the first-best
price, but slowly.

Proposition 7 In a fully competitive market, suppose that a mass of agents facing
identical inventory shocks, and with risk capacity less than 1/2 of the market, merge
to form a single large player. Then for any distribution of shocks, the total welfare of
the merging players falls relative to the level before merger.

Proof. See Appendix. m

Next, we observe that the price impact of the large player is connected with the
equilibrium trading rate x. What would happen if the large player could commit to
any trading rate and the price impact is determined from the first-order condition

21The phenomenon in which agents to not take into account the effect that their trades have on
the price that other agents are facing is sometimes referred to as the “firesale externality.”
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given that rate? What is the optimal selling rate, and is it slower or faster than
the equilibrium trading rate given by ?

Proposition 8 Consider a game in which the large player (through commitment)
determines the trading matrix
Q- Rr [ boE/pf —1
k2 —bL/bF 1
from a class of matrices that lead to convergence to the efficient allocation at rate k.
Then the trading rate & that maximizes the utility of the large trader is infinity when
the large player’s risk capacity is 1/3 of the market or less.

Proof. See Appendix. m

Our third result is connected with the phenomenon of (technical) front-running.
If new players enter the market, they take away market power from the large player.
Specifically, any entrant would want to make profit from the momentum generated by
the sales of the large player, by selling short early when the price is high and buying
back later when the price is low. This is what we define as front-running.

For example, given an initial allocation between the large player and the fringe of
[1,—1], imagine that a new portion of the fringe with a neutral allocation of 0 enters
(so that the efficient allocation is for all players to hold zero inventory). How does
trade proceed? The new fringe members will not stay at their bliss points. Rather
the fringe (both groups) trades at time 0 to redistribute its inventory uniformly, and
then fringe members buy from the large trader at proportionate rates. Effectively,
the fringe members who start at their bliss point of zero inventory front-run the large
trader who wants to sell. These players will sell assets to other fringe members ahead
of the large trader, while the price is high, and then buy back later from the large
trader at a lower price.

Entry increases the equilibrium speed of trade, s (recall it rises with the risk
capacity of the fringe). At the same time, the price P becomes less skewed away
from first best. Does the benefit of faster trade offset the large player’s loss of market
power? This question is tough to answer, because entry of new fringe members adds
to the risk capacity of the market overall, and thus improves opportunities for risk
sharing. However, we propose a way of disentangling the risk-sharing and liquidity
effects.

Specifically, assume that new fringe entrants arrive with shocks that are propor-
tionate to the average shock of the existing market, so that first-best allocation does
not change. Then the entrants cannot help to share the risk, as their risk capacity
is already absorbed by the shocks they receive. Thus, we capture purely the effect
of rising trading speed on the welfare of the large player. The following proposition
shows that the welfare of the large player increases with entry as long as the risk
capacity share of the large player is less than 1/4 (which is still an unrealistically
high number).
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Proposition 9 Suppose that the risk capacity share of the large player is less than
1/4. If new fringe members enter without adding risk capacity (i.e. with shocks such
that first best allocation does not change) then the welfare of the large player goes up.

Proof. See Appendix. =

We finish this section with a general observation. With transparency about the
source of flow, the market anticipates large players to split their trades into small
portions. As a result, the price impact of even small orders becomes large, which
harms the welfare of large players, even though by exercising their market power they
are able to extract a better price. As we show in Section |5, with a heterogeneous
market of N strategic players, larger traders trade more slowly and have a greater
price impact. It is not surprising then that in practice, large traders want to hide
their flow behind that of small traders, in order to take advantage of the private
information about their supply or demand for as long as possible.

5 Equilibria with N Large Traders.

In this section we describe the properties of equilibria in a market with N large
traders. We follow the same classification of results as in Section [4] by distinguishing
on and off-equilibrium phenomena.

On equilibrium, the speed of trade depends on the overall competitiveness of
the market and the market power of individual players. Small players trade faster,
and misallocations among small players get traded to efficiency faster than those
among large players, as captured by the eigenvector decomposition of (). Equilibrium
price deviates from first best, depending on the allocation among players and their
size/market power. While first-best price depends only on total inventory, i.e. it is
equally sensitive to allocations of all players, equilibrium price is more sensitive to
the inventories of small players than those of large players. That is, as the market
converges towards the efficient allocation, market price is skewed in favor of the large
players. In equilibrium price drifts to first best. This price momentum depends on the
relative market power of buyers and sellers. For example, if there is a small number
of large buyers and many small sellers at a given moment of time, the price drifts up.

Off equilibrium, trades of an individual player have permanent price impact (i.e.
Kyle’s \), which depends on the risk capacity of the rest of the market, and in-
stantaneous impact, as in the model with a single large player and a fringe. The
instantaneous impact, the sensitivity of price to flow, is different for players of differ-
ent size. Instantaneous impact is greater for larger players, as they trade more slowly
and retain a greater portion of their inventory for longer. In addition, trades have
transient impact: i.e. price reaction to total sales that decays over time. Transient
impact exists because players do not absorb flow proportionately to risk capacity and
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so, when sales by a single player stop, trade among other players continues, affecting
the price.

To sum up, while most properties of equilibria are apparent already in the closed-
form solution with a single large player and a fringe, we observe a more complete
picture and several new phenomena in the general model. In general, the speed of
trade varies by the competitiveness of a market segment. Also the general model illus-
trates in greater depth how price momentum depends on the relative competitiveness
of buyers and sellers. Moreover, instantaneous price impact depends on player iden-
tity, providing a rationale for why the knowledge of the origin of trade flow matters a
great deal to sophisticated market participants in practice. Finally, the general model
gives rise to the transient price impact: while this effect is absent from Almgren and
Chriss (2001), it exists empirically.

Unfortunately, in general our model does not have exact analytical solutions.
Hence, we illustrate these results, first, using computed examples and, second, ana-
lytically using an approximation of true solutions that is valid near the symmetric
case. That approximate solution provides explanation and analytical basis for the
patterns we observe in the numerical examples.

5.1 Equilibrium Trade.

We start by discussing trade on the equilibrium path, from the perspective of an out-
side observer. Players trade towards the efficient allocation with speeds that depend
on their size. Price momentum exists, and depends on the relative risk capacity of
buyers and sellers.

Example. Let us start with a simple example which captures broadly the proper-
ties we observed from exploring numerically solutions to many examples. We discuss
economic intuition here, and at the end of this section we provide analytical results
that affirm these properties.

Consider a game with five traders, whose holding cost coefficients are

(', 0%, 6%, 6%, b°] = [1,1.5,2,2.5,3],

and the discount rate is normalized to r = 1. Solving the equilibrium conditions
numerically, we get that any allocation X is priced by vector

P = [—.254,—.329, —.387, —.435, —.476],
and the rates of trading flows are given by matrix

0.630 —0.244 —-0.319 —-0.389 —0.455

—0.163  0.965 —0.326 —0.401 —0.473

@ =1 —0.160 —-0.244 1289 —-0.405 —0.481
—0.156 —0.241 —-0.324 1.598 —0.483
—0.152 —-0.236 —0.320 —0.403  1.892
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When players have different costs of holding inventory, the equilibrium pricing
vector P does not assign the same weights to the inventories of different players (even
though the first-best pricing vector still assigns the same weight to all players). The
reason is that players with large risk capacity 1/b" exercise market power by selling
their inventories more slowly. They do it in order to get a more favorable price from
smaller players: it is less costly for large players than for small players to hold interim
excessive inventory in order to reduce price impact and hence improve execution price.

As a result, prices are not martingales. The price is skewed from first best if
players hold inventories away from the first best. In the absence of further shocks,
trade towards the efficient allocation results in price momentum. For example, if
large players are net sellers and small players are net buyers at any moment of time,
then the price has downward drift. New shocks result in changes in prices that have
mean 0 at the time of the shock, but which generate momentum in the future.

The diagonal of () consists of positive numbers that capture the rates at which
each player sells its inventory. Consistent with the explanation above, and what we
have seen in Section 3, larger players sell at slower rates.

The off-diagonal terms of () are negative. The numbers in each column ¢ indicate
how the sales of trader ¢ become absorbed by other traders. Interestingly, these entries
are much closer to each other than the risk coefficients b° or the diagonal terms of Q.
As a result, in equilibrium flows are not absorbed proportionately to risk capacity.
Rather, smaller traders absorb a disproportionately large portion of the flows, and
eventually re-trade with large traders who are slower.

Smaller players trade faster, larger players trade slower, and it is useful to think
about the overall convergence to the efficient allocation through the eigenvector de-
composition of Q).

Eigenvalue Decomposition of Equilibrium Dynamics. To understand the
dynamics of equilibrium allocations, it is useful to consider “impulse responses,” that
is, how allocations evolve over time for any given starting allocation and in the ab-
sence of additional shocks. Then full trade, with many shocks, can be thought of as
integration of impulse responses of individual shocks.

If no further shocks occur, then the allocation converges towards the efficient
allocation according to the equation

dX, = —QX, dt.

We can see how quickly different misallocations get traded to efficiency from the
eigenvector decomposition of the matrix @,

Q=UKU".

The columns of U are eigenvectors and K is a diagonal matrix of eigenvalues.
The efficient allocation [1/b,...1/bY]T is always an eigenvector of ) with the
corresponding eigenvalue 0. In equilibrium, players do not trade if they are at the
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efficient allocation: if they traded then at least one player would be worse off than if
he had not traded at all. If matrix @) has rank N — 1 (a requirement for the mech-
anism (P, Q) to be acceptable), then the remaining eigenvectors of () have nonzero
eigenvalues. Market clearing implies that the coefficients of those eigenvectors add up
to 0, i.e. eigenvectors are misallocations away from efficiency, and the corresponding
eigenvalues are the rates at which those misallocations get traded away. If in equilib-
rium players eventually trade to efficiency, then the remaining N — 1 eigenvalues of
() must be positive.

The following lemma transforms the equilibrium conditions into a simpler form
using the eigenvector decomposition of Q).

Lemma 2 Consider a mechanism characterized by a vector P and a trading matrix
Q that has only real eigenvectors, with decomposition Q = UKU™'. Then the HJB
equations @) that determine the value functions of the players under truthtelling are
equivalent to A* = UTA' U, i = 1... N, where the coefficients of A’ are given by

—biuu® + (PUNu*ky, + (PUR)u¥k;

at, = , 23
ik 2(r + ki + k) (23)
and ki 18 the k-th diagonal element of K.
Given , the first-order conditions can be written as
- PU—L— (U
u'® (bZ + k(T + Ky) — T+;’“+K( - )l ) = —(r + Ky) PU". (24)
Uz (U )

Proof. See Appendix. =

Equations ([23)) provide a convenient direct formula to compute the players’ value
functions from the pair (P, Q). Otherwise, to obtain the matrices A* from , one
has to solve a more complicated system of equations, or obtain A’ via an iterative
procedure. Equation system is useful because it expresses the equilibrium con-
ditions purely in terms of the vector P and the eigenvector decomposition UKU ! of
Q, i.e. it provides a simpler system of equations than the system and .

Example continued. Returning to our numerical example, the eigenvector de-
composition of () is given by

1 1 218 118 .081
666 —.530 782 214 .123
U=| 5 —.221 —619 .668 .213 |, diagK=1[0, .93, 1.38, 1.82, 2.24].
4 —.143 —.234 —.748 583
333 —.106 —.147 —.252 —1
(25)

25



Note the sign pattern in the eigenvectors: they break the market into two sides
according to risk capacity, with one side of the market selling and the other, buying.
The eigenvectors, the columns of (), are determined only up to a constant. We
normalized eigenvectors 2 through N so that one unit in total is misallocated between
large sellers and small buyers. Misallocations among the smallest players get traded
away faster than those among the largest players in the market: for example, the
second eigenvector represents the largest trader having excess inventory while the
last vector represents the smallest trader having excess inventory; the latter is traded
at more than twice the speed of the former.

5.2 Off-Equilibrium Market Properties: The Price Impact.

In our model, we can study what would happen when a player does not choose the
rate of trade optimally, but instead chooses a specific alternative trading rate. Any
equilibrium trading rate of a player corresponds to some allocation of that player
(given the allocations of others). If a player deviates with respect to the speed of
trade, other players would incorrectly infer the deviating player’s allocation, and
market would react as if the allocation of the deviating player were different. The
optimal equilibrium trading rates of players depend on the hypothetical possibility of
what would happen if they deviated.

Let us discuss the implications of our model on the price impact of trades in
general, building upon our discussion of price impact with a single large trader and
fringe in Section [4, The following proposition characterizes the path of prices and
allocations under a deviation of player 7, as functions of player ¢’s trading rate and
allocations of other players.

Proposition 10 Playeri’s selling rate qi, given the allocation vector of other players
X, ", leads other players to believe that player i’s allocation is given by

qi . Qi,—ithi

o0
Xy = qi

: (26)

where Qlﬂ represents row 1 of Q) excluding entry i. Consequently, the allocation of
players excluding © follows

i1

dX[ = <—@“i%—glié§—:>ﬁeidt—q§Q’(ﬁ-%Z‘“ﬂZ, (27)
q’L’L

where Q™5 is column i of Q excluding entry i, and X" is the matriz constructed from
Y2 by removing row i. The price is given by

G-
P = P_ZXt_l +p7' t—th’ (28)
—_——
Xi
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where P~% represents vector P excluding entry i.

Proof. Notice that if player ¢ acted as if he had allocation Xt’, then the selling rate
of player ¢ would be given by

g =q"X; + Q"X

Solving for X! given ¢/, we find . Plugging in the allocation X/ of the type
that player 7 is imitating into the law of motion of X; and into the price formation

equation, we obtain and (28). =

From , we identify several components of the price impact of player i’s trades.
First, the instantaneous price impact measures the sensitivity of price to flow ¢, given
by

I'= /g (29)
As large traders trade more slowly and exercise market power, they also have a greater
instantaneous price impact. That is, from the same selling rate, the market infers
that a large player has a greater inventory to sell than a small player, hence the price
reacts by a greater amount. This observation is a consequence of our assumption that
players observe the identity of traders.

In our example, the vector of instantaneous price impacts is given by

[0.403, 0.341, 0.301, 0.272, 0.251].

The price depends on the current flow of a given trader (instantaneous impact),
as well as the past trades. If player i sells the total amount of x = fot ¢’ ds and then
stops trading, the price will eventually reflect this total volume absorbed by the rest
of the market. Given the risk capacity of the market excluding player ¢, total sales of
x causes the price to drop by

1
2z 1/

is the total risk capacity of the market excluding player ¢. In our example, the vector
of permanent price impacts is

A'z, where A'= (30)

[0.526, 0.447, 0.416, 0.4, 0.389].

Smaller players face a slightly lower permanent price impact, as the market excluding
them has a slightly larger risk capacity.

The impact of sales of & by player ¢ becomes A’z only eventually, unless player 4
faces a market consisting of traders with identical risk capacity. The reason is that
players do not absorb the flow of player ¢ proportionately to their risk capacity: the
off-diagonal elements of () in column ¢ are not proportional to risk capacities of the
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players. Smaller players absorb a disproportionate share of flow, and if player ¢ stops
trading, other players continue trading among themselves. Since smaller players also
have a greater price impact, their disproportionate absorption of player i’s trades
causes the price to overshoot the permanent price impact level. Hence, trades have a
transient price impact.

Denote by T% + A? the sensitivity of price to sales of player i, when the sales of
x by player i occur over a short interval of time [0,¢], as ¢ — 0. Then the vector of
transient price impacts 7% in our example is

[0.020, 0.055, 0.054, 0.045, 0.034],

and these coefficients can be computed from the following lemma.

Lemma 3 If sales of x by player i occur over a small interval of time [0,t] and then
stop, then as t — 0, total (permanent and transient) impact of trades is given by

. . P+ I'Q"

Proof. The sales of x are initially absorbed by players j # i according to X l ~ X, =
—Q 7" /¢ x. Thus, from (28)), the price immediately after sales stop is given by

7'Q7i,i Ql—z in,i
pu— ? Z_—
Po+ = po —P q' T+p g g
RSP

Hence, the impact of sales is given by (31). m

To get a better sense for price impact, suppose that in our example player 3
(with risk capacity of b% = 2) sells at rate g7 = 1 over the time interval [0,0.5] and
then stops trading. Assume that other players do not receive any shocks. Then,
integrating equations and , we get the path of prices shown in Figure .
To recap, transient impact (which is quantitatively small here) exists because sales
of player 3 are not absorbed by others proportionately to risk-capacity, hence after
player 3 stops selling, other players continue trading among each other.

The term “transient impact” is also used to capture the empirical pattern that
the price, following an interval of sales, overshoots and retracts a bit after sales cease.
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Figure 1: The decomposition of price impact.

5.3 Optimal Trading without Transient Price Impact.

Optimal trading with only instantaneous and permanent price impact has a simple
characterization, which we derive here. This case is of special interest, because we can
use it to quickly derive equilibrium in the case of a symmetric market, where play-
ers have no transient price impact, and approximate equilibria in nearly symmetric
markets, where transient impact is second order.

In general, this case leads to a simple approximately optimal rule for trading,
which is helpful because (1) transient impact in our model is small and (2) it is
complex, since the rates of decay of transient impact depend on the eigenvalues of
trading dynamics among players other than player <.

Proposition 11 Suppose player i’s trades have only instantaneous and permanent
price impact characterized by coefficients I' and A*. Then, in order for player i’s
strateqy to be optimal, the following condition has to hold

r(pe — I'q)) = —b'X] + Ng; + E, [d(p, — I'q))/dt] . (32)

Equation generalizes condition of Proposition [4| that characterizes opti-
mal trading of a fringe. Indeed, fringe members act as if their trades have no price
impact at all (instantaneous or permanent). In equation , p:— I'q} is the marginal
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revenue of player ¢ from an extra unit sold. Thus, unlike (17]), which can be written

as
Py = —bZXtZ -+ Et [dpt/dt] s

equation is a condition on the level and rate of change of not the price, but rather
marginal revenue. In vector form, equation can be written as

(P-I'Q)(rl — Q) = b1+ N'Q". (33)

Notice, in particular, that if player ¢ trades according to , player ¢ does not
ignore the equilibrium-path price momentum. Rather, this condition requires a high
level of sophistication - player ¢ recognizes who the buyers and the sellers in the
market are, and how their behavior pushes the price. Player ¢ is only biased about
the hypothetical scenario of what would happen if he traded at an off-equilibrium
rate, potentially underestimating the impact on price a little bit. When transient
price impact exists, equation (32)) leads to a slight bias to more aggressive trading
relative to a fully rational trad

Proof. Consider the optimal strategy ¢/ and a deviation ¢ +y;. The deviation results
in the allocation

t
X,f—XZ—/ysds.
0

If p; is the price process for the strategy ¢!, then the price after a deviation, given
only the instantaneous and permanent price impacts, becomes

t
p— A / yo ds — Ty, = o+ N(XT — X7) — T'y,
0

Denote by v; the player’s value function under the strategy ¢!, and conjecture the
following quadratic form

CL(XZ — XZ)Q + bt(Xti — XZ) + v (34)

for the value function after the deviation, where a is an appropriate constant and b,
depends on the stochastic environment of the price process. The HJB equation is

X! ' Vi ' b (XE — X 4+ X1)2
r(a(XtZ—XZ)2+bt(XZ—X§)+Ut):my?x_ (X 2t+ i)

(. J/

—bi(X})2/2, payoff flow

E,[db,]
dt
22Tn general, we believe that there can be huge insights from exploring the dynamics of this model

with players of various levels of sophistication. Equations such as (32) can be used to formulate
trading rules for particular subgroups of players.

Ey[dvy]

(e +Ai()~(f —X}) = T'ye)(q; +ye) — 2yta(Xti — X}) = by + (XZ - X))+ -
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If we solve this equation with y; = 0, then we obtain a lower bound on player ¢’s
value function after a deviation (since y; = 0 is not necessarily optimal following a
deviation). Matching coefficients on (X; — X/)? and X/ — X/, we obtain a lower bound
if

ra = —% and rb = —b'X; + AN'q; + Etc[lcibt]
(notice that the coefficient on the constant matches automatically from the defini-
tion of v, as the value function). Given this bound, in order for player i to find it
unattractive to deviate when X'tz = X}, the first-order condition with respect to y;
must hold at 3, = 0, i.e. we must have

by =p — I'q). (36)
Combining this with the condition for coefficient b, we obtain B |

(35)

5.4 N Traders with Symmetric Risk Capacities.

Let us use Proposition to characterize dynamics in a market with /N traders of
identical risk capacities.

Proposition 12 Consider a market of N traders with identical risk coefficients b.
Then the equilibrium price and trading dynamics in the unique non-degenerate sym-
metric equilibrium are characterized by the pair
N —2

5 r(I —S/N), (37)
—

K

P:—Nirl and @Q =

where 1 is a row vector of ones and S is an N x N matrix of ones. That is, the
allocation converges towards efficiency at the exponential rate k.
The players’ welfare is characterized by the matrices A® with entries

rb3N — 2 i rbN — 2 4 rb N —2
ik 9 (N —1)N2

BT T TN 0 YT Ty e
23We only showed that condition (32)) is necessary. For sufficiency, we can show that the actual
value function also takes the form (34). Indeed, the first-order condition for y; in the HJB equation,

given , is

(38)

(A" —20)(X} — X)
217 '
Plugging this into the HJB equation and matching coefficients, we obtain

Yt =

v
2 411

ra =
and the same equation for b; as in . That is, the true value function and the upper bound we

used have the same slope at X} = X} (obviously, if the first-order condition with respect to y; is to
hold) but the true function is less concave, i.e. a is higher.
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for j, k # 1.

Proof. From symmetry, matrix ¢) must be of the form (I — S/N) and vector P
must have identical coefficients p. Player i’s trades have no transient impact (since
flow of any player is absorbed efficiently) so price impact of player i is characterized

by (we use to get AY)

. N . ‘Q N
po-k o PN g noo2EY PN
qu (N _ 1),€ qn qu N -1
We now use optimal trading condition . If Y ; X7 = Nz, then price is p, =
Npzx. Since expected change in total supply is 0, E;[dp;] = 0. The allocations converge
to the efficiency at rate r, i.e. ¢ = k(X} — x), and player’s trading rates also decay

at expected rate k, i.e. Ey[dql] = —x*(X} — ). Hence, becomes
r(pNz — I'k(X} — 1)) = =bX; + N'k(X} — 2) + I's*(X] — 2). (39)

Matching coefficients in (32]), we obtain

N —2
z: rp(N—-2)=2pr = K= 5"
. pN b
X, : (T+2R)N_1— b = p= N

In the Appendix we provide an alternative proof, using the system of equilibrium
equations and directly, and derive the players’ value functions. m

Intuitively, the price vector P must have all the same elements from symmetry,
and must correspond to the first best price (otherwise, if players are at the efficient
allocation already, they would still want to trade). Since inventory shocks have zero
mean, it follows that prices are martingales in equilibrium of the symmetric bench-
mark. Off-equilibrium, trades have instantaneous and permanent price impact. As
a result, players take time to trade to the efficient allocation, and so the equilibrium
is inefficient (even though prices are first-best on the equilibrium path)@ Not sur-
prisingly, the speed of trade is increasing in the number of players in the market,
suggesting that market power could be bad for efﬁciency@

24As we mentioned before, an analogous result has already been shown in a slightly different
context in Vayanos (1999).

25The full effect is more subtle though. If traders merged in pairs (so that the market would move
from N to N/2 traders) and the merged traders shared their inventories efficiently, for a symmetric
3. the overall welfare would actually remain unchanged. Such a merger would result in two opposite
effects that exactly cancel each other out in the symmetric model: the market would converge to
efficiency at a slower rate, which hurts efficiency, but the merged players would share their shocks
more efficiently, which helps welfare.
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It may seem surprising at first that value function matrices A* have positive coef-
ficients everywhere outside column and row i (see equation (38))). The reason is that,
while players experience disutility from shocks to their own allocations - which they
have to hold or pay other traders to offload - players actually earn utility by taking
excess inventory off of other players. Therefore, in equilibrium players who help other
players trade - liquidity providers - may have positive expected utility.

5.5 Approximation near Symmetric Risk Capacities.

While in general we cannot characterize equilibrium in closed form, we can approxi-
mate equilibria, up to terms of order €2, near symmetric risk coefficients, perturbed
by terms of order e. As we show in a bit, the approximate formulas we obtain are
extremely useful. First, in practice the approximate formulas generate answers that
are quite precise even in cases where risk coefficients b® are not nearly symmetric.
Second, we can use the approximate formulas to illustrate analytically the important
economic properties of asymmetric markets.

It is possible to derive an approximation of equilibria near the symmetric case
using formulas and for the perturbation of risk coefficients

b(1l+e), (40)

directly by keeping only terms of order |¢|. In , 1 is a row vector of ones and
€ is a small vector whose coefficients add up to 0.

Proposition 13 Consider the perturbation of symmetric risk coefficients (@) Then,
equilibrium equations hold, up to terms of order |e|?, for the pair (P, Q) given by

A 3N —4 A

P =P(I+ 2D, P d Q=Q(I+D,), 41
where P and Q) are the pair that solves the symmetric case , and D, 1s a diagonal
matriz with vector € on the diagonal. The transient price impact is of order |e|?.

Recall that post-multiplication by a diagonal matrix [ + D, in (41)) results in the
multiplication of the columns of the preceding matrix (in this case Q) by the entries
of the diagonal elements.

We take a shortcut to prove Proposition 13| using the property that transient price
impacts are of order |¢|? near the symmetric case[| Then the the characterization of
Proposition [I1] applies. As a result, we bypass the algebra that involves value function
matrices A’, and focus only on equations that contain P and Q.

26Transient impact is of second-order because absorption of sales by any player is up to order e
proportionate to risk capacities and price is, up to order e, first best. Taking these effects together,
transient price impact is of second order. See the proof of Proposition
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Proof. We have from and , using expressions for P, Q in ,

ﬁa + (@ = 1)é) + O(le]?), (42)

i b/r ¢ 2
and A =51 <1—N_1)—|—O(\e| ).

I' =

Furthermore, yields

(P+1'QHQ!

“br N-2, 9
— <1+N_1e) +O(le)?)
T2k (14 €) + O(le?)

(. s

Y

= A+ O(|e]).

qii

Hence, transient impact is of order |¢|?, and we can use equations to characterize
(the approximate) equilibrium. In matrix form, these equations can be written as

DAQ = D+ (1"P — D;Q)(r] + Q), (43)

where Dy, Dy and Dpg are diagonal matrices of permanent and instantaneous price
impacts, and the players’ risk coefficients, respectively. Plugging in , we obtainm

b/r ([_ D,

) QU+ D.)=b(I+ D.)—

N -1 N -1
b/r (I—I—mPD)—I—b/—T(I—I—(xP—l)D QU+ D) | (rI+Q(I+ D,))
N € (N _ 1)/{: € € € .
Collecting terms of order € (and multiplying by r/b), we obtain
D D
- EQ + Q € . ’]"_DE—

(N—-1)2 N-1
zt zf —1 I—-S/N S I—-S/N
(WﬁDd3N_lau—Smm+jverJ01+Qy—GV+7VTT)QQ.

To make sure that holds up to terms of order |e|?, we need to make sure that
coefficients in front of D, D.S and SD. match (notice that SD.S = 0). Collecting
terms that multiply D., D.S and SD., respectively, we get

K i K IP (+ )
— =r———(r+kK)—
(N-1)2  N-1 N -1

K
N -1

27Recall that S is an N x N matrix of ones.
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K 1 &K . P —1r+k
N(N—-1)2 N-1IN N-1 N
k/N o 1 (r+5) + K

== |0+r)+ 77—
N -1 N N(N-1) N(N —1)
It is easy to verify that each of these three equations holds with 2% given by . [ ]

and

The approximation turns out to be quite precise numerically even for risk capaci-
ties away from symmetric. For example, consider an example with five players, with
risk coefficients [1, 1.5, 2, 2.5, 3]. Then the approximation gives

6 —.225 —3 —38 —.45
—.15 9 —3 —38 —.45
P=—[29.345.4.455.51], Q= | —15 —225 12 —.38 —45 |. (44)
—15 —225 -3 15 —.45
—15 —225 —3 —38 18

The true solution, computed from equations and directly, is

6298 —.2441 —.3192 —.3894 —.4554

—.1628  .9653 —.3256 —.4010 —.4727

—[.254 .3294 .3875 .4351 4757, —.1596 —.2442 1.2893 —.4050 —.4808
—.1557 —.2406 —.3240 1.5983 —.4835

—.1518 —.2364 —.3205 —.4029 1.8924

The approximation is surprisingly good in practice for a vector of risk coefficients
quite away from symmetric (but without coefficients differing on the order of a magni-
tude). There is a slight bias in magnitude, but the approximation reveals coefficients
of P that look “right” relative to each other. Moreover, the approximation high-
lights important properties of the true @), specifically that diagonal coefficients are
roughly proportional to risk capacities, and off-diagonal coefficients in each column
are roughly identical. Finally, it is a nice property of Q that even if it is an approxi-
mation, it results in trade to the true efficient allocation (and not an approximately
efficient allocation).

Overall, we think it is fair to say that (while it is unfortunate that our general
equations do not have a closed-form solution) the approximation of Proposition [13|is
of huge value: it conveys the economic properties of the model and does it through
simple formulas. For example, the columns of indicate that when player ¢ sells,
the flow is absorbed approximately equally by all other traders despite the differences
in their risk capacities. That is, small players absorb flow more quickly (and if player
i stops trading, they resell some of what they bought to other larger traders). This
gives rise to transient price impact (away from the symmetric case), because price is
more sensitive to allocations of small players than to those of large traders.
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Let us reiterate some of the most important on and off-equilibrium properties
of our model in light of the approximation. First, let us discuss equilibrium price
momentum.

From we see that the price is less sensitive to the inventories of large players
than those of small players (recall the players with the most negative €' are the
largest). As we explained above, the intuition is that large players have market
power and they control their trading rates better, while the small players compete
with each other and pay much less attention to the impact of their trades on the
price. Hence, equilibrium price is skewed in favor of large players, relative to first-
best, and it tends to first best over time as the allocation converges. Second, let
us discuss the speed of trade. The diagonal elements of Q are proportional to risk
coefficients. Hence, in this approximation the speed of trade of individual players is
inversely proportional to their risk capacities. The following proposition characterizes
eigenvectors and eigenvalues of the approximating matrix Q

Proposition 14 Suppose that the coefficients of vector € are strictly increasing and
1+e' > 0 (that is, players are ordered from largest to smallest, and the risk coefficient
of the largest player is b* = b(1 + €') > 0). Then the eigenvalues of matriz Q =
k(I —S/N)(I+ D,) satisfy

k1 =0, ko€ (K(1+€), k(1+€)), ... rn € (KL +N ), k(1 +€N))

and corresponding eigenvectors take the form (for k' = k;)

1

_— 45
1+é —K'/k (45)

v =[v1,vs,...05]"  with v; =

The decomposition confirms the curious sign pattern we observed in our example
(25). Notice that the first i« — 1 coefficients of vector v; are positive, in increasing
order, while the remaining coefficients are negative (also in increasing order). Hence,
in each eigenvector, large players are on one side of the market while small players
are on the other side. The fewer players there are in the group of small traders, the
larger the corresponding eigenvalue, which corresponds to the speed of trade. Notice
that the first eigenvector is the efficient allocation.

Proof. Consider a vector v = [v1, vg, ... vx]T, and let us normalize Y, (1+¢€')v; = N.
Then Qu = k[(1+€)v; —1,... (14 €V)uy —1]. If v is an eigenvector with eigenvalue
K/, then the coefficients v; satisfy s((1 + €')v; — 1) = 'v; or (45).

For the normalization to hold, we must have

1+4¢€
—— = N. 46
Zl—i—é—/@’//@ (46)

%
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Equation has solution ' = 0. In addition, for each i = 2,... N, as k'/k goes
through the interval (1 + ¢, 1 + ¢’), the sum

14 et N 1+4¢€
l4+eé 1 —k'/k 1+€—FK/k

goes from —oo to oo, while the remaining terms of stay finite. Hence, equation
has a root k' € k(1 + €71, 1+ €'). Corresponding to each of these roots, there
is an eigenvector with coefficients of the form . Since we have found N distinct
eigenvalues k;, and Q is N x N, we have found all eigenvalues. m

Finally, let us turn to off-equilibrium properties, i.e. price impact. From (42]),
instantaneous price impact (the sensitivity of price to trading flow) of player i is

given by y (N 2y
I'= N-1Dn (1 — mel) + O(le]?).

Large players (with small ¢') have greater price impact than small players. This
property stems from differences in equilibrium strategies - large players trade slower
and hence their flow signals that they have a larger amount waiting to be traded.

Permanent impact reflects simply with the risk capacity of other traders. Finally,
as we discussed earlier, the existence of transient impact has to do with the off-
diagonal entries of the matrix () - smaller players, whose allocations have a greater
impact on price, initially absorb a greater portion of flow than their risk capacity
dictates.

5.6 Application: Technical Front-Running.

In Section 4, we saw a basic example of front-running of large trader’s sales. Fringe
members, who start with first-best inventories, pick up supply from other fringe mem-
bers (in an instant) and then sell to the large trader. In this particular pattern indi-
vidual fringe members have no price impact and hence do not optimize the timing of
their buying. We now illustrate the process of technical front-running in more detail
using a model of multiple symmetric large players and a fringe. We also illustrate
how properties of prices as well as the speed of trade towards the efficient allocation
can be understood through the eigenvector decomposition of the matrix Q).
Consider a market with N — 1 large players with identical risk capacities 1/b% and

a competitive fringe with risk capacity 1/b. In this case trading is characterized by
the matrix Q = UKU™!, where

IR | 1
/6 —1 ... 0 1
U= : oo : and K =diag |0, K, ..., K, K|, (47)
vt 0o ... -1 1
/6" 0 ... 0 1-N
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with k < k. The price is given by P = IIU"!, where

1 N — 1)b"
O=|—-, 0, ..., 0, 78|, where szg.
T r+ K

The eigenvector decomposition of trading dynamics can be understood as follows.
The entries of II correspond to the prices that result from allocations in the cor-
responding columns of U. The first column is the efficient allocation. Columns 2
through N are misallocations, with coefficients that add up to 0. These eigenvector-
misallocations get traded to efficiency at rates given by the eigenvalues x and k. Any
allocation X can be represented as a linear combination of eigenvectors, to see how
it is traded as well as the resulting price.

From symmetry, any misallocation among the large traders has no effect on the
price. This is illustrated by the zero coefficients 2 through N — 1 of II; the corre-
sponding columns of U span the space of various misallocations among large players.
In contrast, any imbalance between the large traders and the fringe leads to a price
that is different from first best. When the large traders are net sellers, the price is
above first best, as illustrated by the positive value of 72. That is, the price is 77 for
the allocation X that corresponds to the last column of U.

Let us illustrate how front-running can happen in this model. With two large
players and a fringe, suppose that player 1 wants to sell one unit, while the fringe
wants to buy one unit. Player 2 wants neither to buy nor sell, so that X, = [1 0 —1].
Because player 1 has market power against the fringe, he sells slowly and charges a
price above first best. This can be seen by the positive last component of II, which
prices the excess inventory of the large players relative to the fringe. Over time, the
price drifts down and converges to first best.

Knowing this, of course, player 2 does not stay at his bliss point. Rather, he
sells short initially to the fringe, and buys back from player 1 later. In other words,
player 2 front-runs player 1. The mere presence of player 2 in the market changes
the dynamics between player 1 and the fringe. Player 1 trades much faster knowing
that there is a front runner. The trading speed & between the two large players and
the fringe is faster than the trading speed x given by , which would have resulted
had player 2 been absent.

In this example, the initial allocation can be decomposed into eigenvectors in the
following way

1 s g 1/2 1/2
0 | = # — | 12 |+ | 12
~1 0 ~1

That is, the allocation Xy = [I 0 — 1]7 consists of an imbalance between the large
players, and between large players and the fringe. The former gets traded to efficiency
much more slowly than the latter, with the corresponding convergence rates k < k.
Thus, at the beginning player 2 will be primarily selling to the fringe, and buying
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only a little from player 1. The misallocation between the two large players persists
a lot longer than the misallocation between the large traders and the fringe.

6 Common Values.

Our model has correlated private values. In Section 2] we also provided an extension
of the model to incorporate common values, with payoff flows given by @ While a
complete analysis of this case is beyond the scope of this paper, we conjecture that
when the common value components are not too large, the fully separating linear
equilibrium of the conditional double auction still exists. The corresponding direct
revelation mechanism asks players to report their private signals £/, and sets prices
and trade flows according to

bt = P(fi"t - Fft)a qr = Q(ft - F&)a
X

where holdings Z; are computed directly from the past history of trades. If player ¢
reports signal £ + y rather than &, the report affects the entire vector X; that feeds
into the mechanism, and not only component X}. As a result, the first-order condition
for player i to report truthfully becomes

(PFHQ' + P(Q'F") = 2(A'QF")",

rather than ((15]), where F* is the ith column of F. Matrix A’ satisfies the same HJB
equation ([16)), while the coefficient k° of the value function is now

pi = tr [ZFFTETAZ'].
r

We use these equations to illustrate how common values affect trade via two examples.
First, we extend the symmetric result of Proposition [I2]to the case of common values.
Second, we explore what happens when one particular player has private information
about fundamentals.

In the symmetric case with b° = b for all 4 and matrix F as in (10]), we can replicate
our calculations from the proof of Proposition [12| to obtain

(N =2)(1 —¢) - ¢N
2(1 — ¢) + 260N

If =0, k= (N—-2)/2 asin . As ¢ goes up, k goes down. Intuitively, as the
common value concerns increase, trade slows down@ As before, k increases in N, so

b
P:—ml and @ = k([ —S/N), where k=

ZDu and Zhu (2013) present an analogous result.
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more competition speeds up trade. However, in order for the equilibrium with trade

to exist, we need k > 0, or
N -2
< aN=T)
The common value component of signals cannot be too large. As N — oo this critical
value of ¢ converges to 1/2.
For the asymmetric case, we extend the numerical example in Section 5.1 to

provide some casual intuition. To that end, suppose that

102 00 0
0 1 000
F=101021020
0 02 010
0 02 0 01

rather than the identity matrix, and the rest of the parameters remain unchanged.
According to matrix F, traders 1, 3, 4 and 5 have signals about only their private
value, while trader 2’s signal contains information about common value that impacts
other traders symmetrically. In this case the (P, Q) change to

P =—1[0.276, 0.180, 0.439, 0.500, 0.553],

0.503 —0.089 —-0.303 —-0.370 —0.433
—-0.062 0.335 —0.113 —-0.134 —0.154
Q= —0.151 —-0.085 1.018 —0.380 —0.450
—0.147 —-0.082 —-0.303 1.259 —0.451
—-0.143 —-0.079 —-0.299 -0.375 1.487

Comparison to the example in Section 5.1 reveals the following three effects of
common-value information in the signals of trader 2. First, trade gets slower overall.
This can be seen by noticing that all entries in ) get closer to O.@ Second, common
value can create a reversal in the speed of trade: trader 2 now trades slower than
trader 1 even though he has higher inventory costs. This is because the common-value
information significantly increases player 2’s price impact.m Finally, the off-diagonal
elements of () change in the following way: when trader 2 sells, his flow is still
absorbed approximately equally by all other traders. But when others trade, trader 2

29A general pattern we observe when we introduce positive off-diagonal elements in F' is that the
diagonal entries of ) get smaller; the exact pattern for off-diagonal terms is more complicated.

301f player 4 changes the announcement of his shock by y, the mechanisms’ perception of the vector
X changes by F'y, and hence player i’s flow changes by Q"F'y. At the same time, price changes by
PF'y. Hence player i’s instantaneous price impact with common-value information is —PF?/ (QiF 4.
For player 2 in our example, instantaneous price impact is 2.2 and significantly higher than those
for other players.
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absorbs a disproportionately small portion of their flow. Again, trades of 2 are slowed
down by the high price impact. Intuitively, other players may be worried that the
willingness to trade by player 2 is a signal of unfavorable common-value information.

7 Discussion

There is a large literature in financial mathematics that focuses on optimal trading
under various transaction costs and microstructure frictions. The focus of this lit-
erature is largely on optimal behavior of an individual trader given a realistic price
process, and a realistic model of how trades affect prices - as in Almgren and Chriss
(2001). Prices are often modeled as an arithmetic Brownian motion (so they may be
negative) - as Almgren and Li (2016) argue, while geometric Brownian motion is a
more realistic representation of prices, arithmetic Brownian motion is an adequate
and tractable representation of prices for the time horizons over which trades take
place (e.g. over a day). Trades have instantaneous and permanent price impact, and
possibly transient price impact characterized by an appropriate decay kernel, as in
Gatheral, Schied and Slynko (2011). While in practice price impact may not be linear
in flow - e.g. Almgren, Thum, Hauptmann, and Li (2005) document that it may be
concave for small trades - linearity is a common assumption. Concavity may reflect
transaction costs due to discreteness of micro-level microstructure, but linearity leads
to greater tractability, and certain results suggest that only linearity is consistent with
absence of arbitrage (e.g. see Gatheral (2010) and Huberman and Stanzl (2004)).

Our paper follows this literature’s focus on realistic price behavior. However, in-
stead of assuming that prices are Brownian and that trades have instantaneous and
permanent impact, we derive these properties in equilibrium. That is, we model a
market in which individual participants have objectives similar to those of individual
traders in Bank, Soner and Vof§ (2016) - they have evolving hedging motives for trad-
ing individual assets - but we derive price behavior in these markets, and characterize
price impact faced by individual participants. We obtain price behavior consistent
with the assumptions of this literature, and because we model the interaction of all
traders, we tie the properties of price impact to market characteristics (i.e. the num-
ber of market participants and their market power). Thus, our model can be thought
of as an explanation for why price impact has a particular form, and how it is tied to
market characteristics.

In order to characterize equilibrium in a tractable manner, we assume that trading
is not anonymous, but rather players can condition their behavior on who they are
trading against. This assumption is not completely realistic, even though it gives
players information that traders would like to know, since flow of large investors tends
to be much more persistent than that of small traders. However, with this assumption
we get important benefits. First, we obtain a stationary characterization of equilibria
- market liquidity does not change stochastically depending on the active players in
the market. Second, we get a characterization of price impact that depends only on
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the allocation of market power among players, and not on trading needs or activity.
Finally, in solving the model, we avoid the complex issue of filtering that players
would otherwise need to perform to infer the source of trades from price behavior.
Moreover, our paper makes a methodological contribution — we model trading as a
conditional double auction to allow players to take into account who they are trading
against.

By modeling the entire market, we are able to answer questions not just about
optimal execution of transactions, but also about welfare, determinants of liquidity,
and strategic interactions among traders. Of course, we are not the first ones to
model the whole market - Vayanos (1999), Du and Zhu (2013) and Kyle, Obizhaeva
and Wang (2014) model symmetric markets, while Malamud and Rostek (2014) and
Lambert, Ostrovsky and Panov (2016) model asymmetric markets in a one-shot set-
ting - we model dynamics of an asymmetric market. Large traders trade slower, and
so their flow is highly persistent, consistently with empirical literature. This leads
to price momentum, which is absent from symmetric models. Momentum from the
flow of large traders gives rise to the front-running phenomenon in our model. For
example, some players may sell short together with a large trader early on, and buy
back later after the price drifts down. The front-running phenomenon helps reconcile
the persistence of institutional flow and price momentum with market efficiency - a
question addressed also in Farmer et al (2006). Our answer is that while flow of large
traders is persistent, market price reacts right away fully to the news of the entire
supply of a large trader, as the front runners trade with the large trader. That is, the
market recognizes the entire quantity that the large player would like to sell. How-
ever, momentum still exists, reflecting limits to arbitrage. Front runners recognize
momentum, but they are already exploiting it to the fullest given their risk capacity.
Overall, our model suggests that the front-running phenomenon not only improves
efficiency, as prices deviate from efficiency less and converge to efficiency faster in
more competitive markets, but that it can be good for large traders to be front run.
That is, while front runners take away large players’ profits, they also make it easier
to execute transactions with less price impact.

There are a number of questions that are at the center of the debate about financial
market regulation, but which cannot be addressed definitively given existing theory.
While our model is too simple for many of these questions, with the focus on the
entire market and with explicit modeling of players’ utilities, it can be used to think
about a subset of them. One question is about opaque versus transparent markets.
Our model is transparent, because traders observe flows of other traders, but how
would the equilibrium change if players did not see that? Presumably, large traders
would have lower price impact, and so they could trade faster, as they could hide
their flow behind that of small traders. If so, then what is the effect of separation of
flows of large and small traders, e.g. when some market makers pay retail brokerages
to execute retail flow. Does this improve execution prices of retail traders, as these
market makers claim? It seems quite likely, since our model suggests that trades of
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small players should have lower price impact. However, another implication is that the
residual flow has a greater fraction of trades of institutional investors, and is therefore
more persistent. This leads to lower market liquidity overall, and this equilibrium
effect could harm retail investors who seem to be getting better execution.

Our model approximates flow as continuous, whereas in practice transactions are
discrete. Is there any relationship, then, between our results and bid-ask spreads? Po-
tentially there is a useful link. Suppose bid-ask spreads are set by liquidity providers
who take into account tradeoff between risk and profit that they can make from facili-
tating transactions. Then the size of the bid-ask spread should depend on competition
among liquidity providers, as well as properties of the flow, e.g. persistence, and our
model speaks to those properties.

8 Conclusions

We would like to summarize the main contribution of the paper. First, the paper
makes a methodological contribution. We introduce a linear-quadratic model of con-
ditional double auctions in a market where traders have hedging motives to trade.
This model provides a tractable way to analyze the market with heterogeneous par-
ticipants. Second, we characterize important on and off-equilibrium properties of
trade. On equilibrium players trade slowly to reduce price impact, and flow of larger
traders is more persistent than that of small traders. This heterogeneous behavior
leads to price momentum, and creates incentives for players to know the source of
flow for technical front-running. Off equilibrium, our characterization of price impact
matches the classical assumptions of financial mathematics literature - trades have in-
stantaneous, permanent and transient impact. Our results have welfare implications
- for example, we show that market power, characterized as the ability to coordinate
the execution of a large number of trades, may be detrimental to players’ welfare in
a fully transparent market, i.e. when large traders cannot hide flow behind those of
small traders.
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ONLINE APPENDIX, NOT FOR PUBLICATION.

A Appendix A: A Microfoundation of Quadratic
Preferences.

In this section we microfound our model with quadratic preferences by laying out a
more natural model with exponential utilities, in which players trade to hedge private
shocks that expose them to a common risk factor. We show that the equilibrium
equations of the linear-quadratic model match those of the exponential model in the
special case when the shocks that expose players to the common risk factor become
small. In this sense, the exponential model is more general, but the linear-quadratic
model provides a clean special case as the equilibrium dynamics, characterized by the
pair (P, @), depend only on the players’ risk capacities and not the sizes of shocks
that individual players receive, or the correlation among shocks.

We then extend the model to also allow shocks to carry information about a
common component of value. We confirm the result of Du and Zhu (2013) that in
symmetric markets, as the players get more information about common fundamentals,
the speed of trade slows down. In general asymmetric markets, equilibrium in this
more general setting is characterized by a system of equations analogous to what we
described in the text, with only one extra term.

A.1 The Exponential Model.

Consider a model in which all players ¢ = 1,... N have exponential utility
—exp(—a'c,),

where o’ > 0 is the coefficient of absolute risk aversion. Players consume continuously
and have a common discount rate r, which is also the risk-free rate in the market.

Players have private information about their risk exposure X! to a common Brow-
nian risk factor dW;. Risk exposure changes due to shocks driven by Brownian motions
Z =z},... Z}], independent among each other and of W, with a vector of volatilities
o. Risk exposures can be traded in the market. We consider a (linear, stationary)
equilibrium, in which players announce their risk exposures, and given a vector of
announcements X, the trading flows are given by QX;, and the market price is given
by PX;. Then the risk exposures follow

dX, =X dZ, — QX, dt

where X is the diagonal matrix with the elements of ¢ on the diagonal. The wealth
of agent i follows

dw! = (rw! — ¢ dt + (PXt)(Q X,) dt + X} dW,
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where ¢! is the consumption of player 3.
Conjecture that the equilibrium value function of player i takes the form

- exp(—ra’ (w; + XFAX, + k). (48)

i
Vg

Then . ' ' - - .
dv; = (rw; — ¢;) dt + (PX)(Q'Xy) dt + Xy dW,

+2XT A2 dZ, — QX, dt) + tr [EXT A" dt.

In order to write down the HJB equation for player i, we must consider )N(Z of the
form X, + 1%y, where 1° is the i-th coordinate vector and y is the amount by which
player ¢ lies.

Then the HJB equation of player i is

—exp(—ra'v’) = Xm;a(}ili —exp(—a'c)
C, A= )

+a’ exp(—ra'v') (rwi —c+ (PX)(Q’X') —2XTAQX +tr [EETAiD
r(at)?
2

The term 4X7TA'SXT A'X is the incremental variance of v! from the volatility of
the entire vector X, 1|
The first-order condition with respect to c is

exp(—ra’v’) (AXTA'TTTA'X + (X7)?).

exp(—a‘c) = exp(—rav') & —c=—r(w + XTAX + k).
Given this, the HJB equation simplifies to

0= max —r(XTAX +k)+ (PX)(Q'X)—-2XTAQX +tr [2xT A
X=X+1y -
I (AXTAISETAIX 4 (X1)2). (49)

Separating the first-order condition, we obtain matrix equations that characterize

stationary linear equilibria in this model. We summarize them in the following propo-
sition.

31This expression assumes that A? is symmetric, otherwise the second instance of A* would need
to be replaced with (A%)7.
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Proposition 15 Stationary linear equilibria of the exponential model are character-
1zed by the equations

P'Q'+Q"P=2A4Q")", rk'=tr[XXTAY, (50)

PTQ@' + (Qz)TP T‘Oéi
2 2

and rA"+ A'Q+ QA" = 1" — 2ra’ AT A (51)

Proof. Equation must hold for all vectors X € R¥. To ensure that, the coeffi-
cients on the constant term as well as the terms of the form X7X* must match, and
the first-order condition with respect to y must hold at y = 0. From those conditions,

we obtain and . ]

The system of and is different from equations and in the linear-
quadratic model only in the term 2ra’A*X3T A, Parameter b° in the linear-quadratic

model corresponds to ra’ in the exponential model, i.e. it reflects the players’ ca-
pacities to wait and absorb risk waiting for a better price to hedge at. In the limit
as 0 — 0, the equations in the exponential model become identical to those in the
linear-quadratic model. Thus, the linear-quadratic model is a special case of the
exponential model. We summarize this finding in the following proposition.

Proposition 16 Any solution of the linear-quadratic model solves equations @ and
in the limit as |X] — 0.

Proof. The conclusion follows immediately, since the term that distinguishes the two
sets of equations converges to 0 as |X| — 0. =

Even though the exponential case is more general, the linear-quadratic model
provides a much cleaner picture of equilibrium dynamics, as the equilibrium equations
depend only on the players’ risk capacities and not the distribution of shocks. This
makes our benchmark case particularly attractive. Nevertheless, in order to provide
a more complete picture, we present a couple of computed examples for the general
case at the end of this section.

A.2 Examples.

We return to the example from Section 5 to explore how the extra term in affects
prices and the rates of trading. Recall that the risk coefficients are [b', 0%, b3, b, 0°] =
[1,1.5,2,2.5,3] and » = 1 in that example. Then the coefficients of absolute risk
aversion are also [a!,a? a3 ot a®] = [1,1.5,2,2.5,3]. Assume that ¥ = 0.11, i.e.
shocks to individual players are uncorrelated and have volatility 0.1.

Then, we have

P =[—.257, —.334, —.394, —.443, —.485].
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The price sensitivities to the allocations of all players increase slightly. Trading dy-
namics are now characterized by

0.619 —-0.243 —0.318 —-0.388 —0.454

—-0.161  0.953 —-0.324 —-0.400 —0.472

Q= | —0.157 —0.242 1.278 —-0.403 —0.479
—0.153 —0.237 —-0.320 1.589 —0.481
—0.147 —-0.231 —-0.315 —-0.398  1.886

The speed of trading slows down somewhat, but qualitatively and quantitatively the
solution looks similar to our baseline model.

Now, consider ¥ = diag [0.1,0.3,0.3,0.1,0.1]. We raise the fundamental needs to
trade of players 2 and 3, while keeping shocks to everyone else the same. Now, players
1, 4 and 5 can provide liquidity to players 2 and 3, and help them share risks. Then
the trading dynamics are characterized by the price vector

P =[-.265, —.358, —.426, —.463, —.507]

and the trading matrix

0.572 —0.246 —0.326 —0.374 —0.437

—0.146 0951 —-0.322 —-0.374 —0.445

@=| —0131 -0.222 1312 -0.364 —0.439
—0.150 —-0.244 -0.334 1.500 —0.467
—-0.145 —-0.239 -0.330 —-0.387  1.787

The price impact of shocks rises and trade tends to slow down, especially for players
who are hit by relatively smaller shocks.

These examples seem to imply that the more general model with exponential
utility does not add much intuition about market dynamics on top of what the baseline
linear-quadratic model already tells us. Of course, there may be interesting effects
that we are overlooking.

B Appendix B: Omitted proofs

B.1
Proof of Proposition Equations can be represented as

Mechanisms for Trading.

m =pl+1lg, (52)

where 7 is a vector of intercepts, 1 is a vector of ones, and Il is a matrix with
coefficients 7/ and zeros on the diagonal. Equation has a solution for all vectors
7 if and only if the image of the set of all flow vectors (i.e. vectors whose entries
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add up to 0) ¢ under IT has dimension N — 1 and does not contain vector 1. In this
case, a unique pair (p, q) corresponds to each vector m, and statements 1 and 2 follow
immediately.

Let us show that if either the image of flow vectors under II has dimension less
than N — 1, of if the image contains 1, then statements 1 and 2 are both false. If the
dimension is less than N — 1, then the pre-image of 0 has dimension of at least 1.
Then 1 is false as (0, g) is a solution for any ¢ in the pre-image, and 2 is also false, as
the span of the image together with vector 1 has dimension at most N — 1.

If vector 1 is in the image of flow vectors under II, e.g. 1 = IIg, then any pair
(p, —pq) is a solution to 0 = pl +Ilg, so statement 1 is false. Likewise, statement 2 is
false since the span of the image (which does not change if we include vector 1) has
dimension at most N — 1. m

Proof of Proposition [2  First, let us demonstrate equivalence of the first two
statements. If the mechanism (P, Q) is not acceptable, i.e. there exists a nonzero
vector X in the null space of @ such that PX = 0, then QX = 0, so Q¥ is not
invertible. Conversely, if Q is not invertible, i.e. QX = 0 for X # 0, then QX =0
also since if all flows except for that of player 1 are zero, then the flow of player 1
must also be 0. Thus, X is in the null space of @ and PX = 0, so (P, Q) is not
acceptable. This shows that the first two statements are equivalent.

Second, let us demonstrate the equivalence of the last two statements. If QF
is invertible, then X = (QF)7'(p,¢% ...¢"), where p = PX and ¢ = QX, so the
allocation X can be inferred from the pair (p, ¢). If QT is not invertible, then the set
of (p,¢%, ... q¢") that corresponds to all X has dimension of at most N — 1. Since ¢' is
a linear combination of ¢%, ... ¢V, the set of (p, ¢) has the same dimension. Hence, we
cannot infer X from (p, ¢). This shows that the last two statements are equivalent. m

Proof of Theorem [1 Let us first identify the one-to-one map between acceptable
profiles and mechanisms. Consider any acceptable stationary linear revealing profile
of strategies of the conditional double auction. Then equation has a unique
solution. From market clearing, (52)) can be written as

1 mi2 . TN p 7t
1 —g2l oo g2 q> 72
1 : = ) (53)
1 7TN2 7TN1 . _ﬂ_Nl qN ~-N
N ~ y
II

where matrix II is obtained by placing 1 in the first column and by subtracting the
first column of II from each remaining column. The profile is acceptable if and only if
I1 is invertible and all #% are nonzero. Hence, QF = II~" diag(#?), i.e. the pair (P, Q)
is uniquely defined from the acceptable profile {#*, 7, i # j}. The pair (P, Q)
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must also be acceptable. Indeed, if X is in the null space of @) and PX = 0, then
1! diag(1/#%) X = 0 implies that X = 0.

Let us show that the mechanism we just constructed has no stationary allocations
X # 0 that have X = 0 for one of the players. Notice that (QF)! = diag(1/#*)II
has no zeros in column 1. If so, then for any stationary allocation, X # 0, the
corresponding price is p # 0, so X = (QF)71(p,0...0)T, and all elements of X are
nonzero since column 1 of (Q7)~! has no zeros. The converse is also true: if X # 0
is a stationary allocation of an acceptable mechanism (P, Q), and if X’ # 0 for all 4,
then the first column of (Q7)~! equals (1/p)X, and so it has no zeros.

Conversely, the pair (P, Q) is acceptable if and only if QT is invertible by Propo-
sition . Since the corresponding profile must satisfy diag(7*)(QF)~! = II, and since
the first column of II must contain ones, we can obtain the corresponding profile
as follows. We must set 7% to the inverse of the i-th entry in column 1 of (Q)7,
and then divide each row i of (QF)~! by 7' to obtain II. Then the first column of II
contains ones, and we can infer the slopes 7! from the diagonal of II, and infer the
remaining ones from the remaining entries. In order for this procedure to work, it is
necessary (and sufficient) for the first column of (QF)~! to have no zeros. We know
that this is the case, because for any stationary allocation X # 0 of @, all elements
X* are nonzero.

Now, let us prove strategic equivalence of the corresponding mechanism and pro-
file. In a mechanism, given the allocation X % of other players, player i has the
choice between flow and price pairs given by (Pf( QX | X=X+ 1%y). In the cor-
responding profile (7%, 7%, j # i), player 4 also has the same one-dimensional set of
price-flow pairs, which he can attain by changing the intercept from 7 = 7#'X* to
7t = #(X" +y). Let us prove that player i does not have any more choices than that
(i.e. he cannot achieve any price-flow pair outside this set by also changing the slopes
7% of his supply-demand function).

Any price-flow pair (p,q) that can be attained by a deviation of player i must
satisfy the N — 1 equations from , with equation i excluded. Since these are inde-
pendent equations (when the matrix IT is invertible), they define a set of pairs (p, q) of
dimensions 1. Hence, any price-flow pair that player ¢ can generate, can be attained
by changing only the intercept #°. We conclude that corresponding mechanism and
profile must be strategically equivalent? m

B.2 Equilibrium Characterization.

Proof of Proposition We have to prove that the truth-telling strategy maxi-
mizes the utility of any player i. For an arbitrary strategy {y;, t > 0}, which specifies

320f course, player i may be able to choose a supply-demand function that does not lead to any
allocation at all.
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the misrepresentation y; of player i’s allocation for any history {X,, s € [0,t]} of
allocations, consider the process

i

G, = / e ((PXS + 'Y ) (Q" X5 + q"ys) — §(X;)2) ds+e " f1(Xy).
0

Then the conditions p* < 0 and ¢* > 0 ensure that 3, = 0 maximizes the drift of G,
and ensures that the maximal drift of GG; equals 0. That is, the process Gy is
always a supermartingale, and a martingale under the truth-telling strategy.

Now, since the process X defined by is nonexplosive, it follows that when all
players follow the truthtelling strategies

Ele™" f{(X;)] = 0

as t — oo . Therefore, player i’s expected payoff under the truthtelling strategy is

- —rs ) bl 7 )
0
Consider any alternative strategy {y;, t > 0} that satisfies the no-Ponzi con-
dition E[e™™X?] — 0 as t — oo. Then for any quadratic value function f(X),
Ele " f1(X;)] = 0 as t — oo. It follows then that player i’s payoff under this strategy
is

E UOOO e " ((PXS + D'y (Q' X + q"ys) — %(Xi)Q) dS] = E[G] < Go = f'(Xo).

Thus, truth-telling is optimal. This completes the proof of Proposition 3| =

Proof of Proposition Individual fringe members do not have price impact, and
an individual may choose to hold allocation z different from that of the rest of the
fringe, X™V. If z = X then individual continuation utility is fV(X) = XTAN X + k¥
and in general the value function takes the form XTAY X + (z — X™)PX + k| since
trading * — XV generates the income of (z — XV)PX.

Since there is no price impact, we treat dynamic choice of an individual fringe
member simply as choosing z at all times. Then the HJB equation is written as

G F
max Tbﬁ —r(XTAYX + (z — XM)PX + kN) + (PX)(QNX)

2XTANQX — (2 — XM)PQX + tr [2XTAY] = 0.
The first-order condition
—bfr — P(rX +QX) =0

must hold at z = XV, so it follows that must hold. Notice also that (kY AY)
must satisfy the same equations as before, . [
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B.3 Large Player and Fringe.

Proof of Proposition [5, With one large trader and the fringe, the mechanism is
described by the four parameters:

dr  —4r
pu— 7P p— y
Q [ a0 ar ] [pL, prF)

First, fringe’s optimality condition ([17)) is
rpr +prgr —prqr =0 and  rpp — prar + prgr + b7 = 0. (54)
Second, for the large player, equation implies that

1
rai; — 2a12qr + 20119, = —gbL +prqr (55)
raiy — angr + a2 (qr + qr) — asqp = w (56)
ra — 2a12qr + 2a22qr = —Prqr (57)

and the first-order conditions are

PLqr = qran — qraiz and  ppqr — prgr = 2a12qL — 2a2qrL. (58)
Using , we can transform , and to
ra;; = —bL/2 —PLqL
rai2 = PL4Fr
rassqr = _qul%“

and plugging coefficients of large player’s value function into , we get

rprqr = —(0" /2 + prar + prar)qr  and  rprqr — rorge = 2(qr + qr)PLge-
Notice that cannot hold with p;, = pp, so

Plugging these into the first-order conditions for the large player, we obtain (if q; #

0 ; ;
b b
S Y L
2b PF— DL PL — PF

331f g1, = 0, then the corresponding solution is the degenerate equilibrium,

1[ = 0
pr=0, pp=——, qr=qr =0 and AL = .
r r 0 0
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This leads to a system of linear equations in pg and py,, which have a unique solution

bR SO o U
PL = 0307 1+ ob) T A
Then
r r bL bF —3bL —bL
=_ =—— and Af=_—
=5 @=gp 2r (3bF + bE) [ —btbF }

The welfare of the fringe can found from equation . We have

l g
7"6122 2CL12(]F + 2@22QF = _§b + Prar
PL4qr — PFq
mf; - @QQF + a2 (qr + qr) — an1qr, = %
rat, — 2at,qr +2afq0 = —prao,
hence
AF _ 1 bt (bL)2 —pLpF
T 20 (3bF 4+ F) (20F 4+ bF) | —bEb — (%)% + 5bEbT + 5(bF)?)

n

B.4 Welfare Results.

In order to prove Proposition [7], we need to be able to evaluate the welfare of a portion
of the fringe when the fringe is heterogeneous. Consider a market with N — 1 large
players and the fringe, in which the joint welfare of the fringe is characterized by the
N-by-N matrix AY. Consider two parts of the fringe with risk capacities B /N and
52 /o respectively, with Bi 4 By = 1. Let us determine the value function matrices
A" and A? for the two parts of the fringe (these are (N +1) x (N + 1) matrices).
How would an initial allocation X = (Xt .. XN= 1,X1,X2) get traded? We know
that part 1 of the fringe instantaneously sells

— Bi(X + X?) (59)

at price PX, where X = (X1 ... XN-1 X'y X2) After the initial trade, conditional
on the absence of future shocks, the two parts of the fringe get utilities 51 X7AN X
and B XT AN X, respectively. Thus, prior to the trade, the welfare of the first part of
the fringe is given by

XTA'X = BiXTANX + (PX)((1 - B) X' — 51 X?). (60)
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Proof of Proposition [T  Let us normalize market risk capacity to 1 = 51 + S,
where 3; = 1/bl and B, = 1/b" are risk capacities of the large player and the fringe,
respectively. Then welfare of the large player is given by

L 1 -3 -1
AT = 2r(26; + 1) [ —1 B1/Be ] ' (61)

Let us compare this with the welfare of this group of players under perfect competi-
tion. The welfare of a fringe of risk capacity 1 is expressed by the matrix A' = —1/(2r)
and the price is given by P = —1/r, thus the welfare of the first part of the fringe

(with risk capacity 81 = ) by is

(X1+X2)2 Xl +X2

o ((1_ﬁ1>X1_/81X2)7

—b

i.e. it is expressed by the matrix

Aol s=2 b1
Yo B-1 B
Compare with (61)). Given shocks of standard deviation (o4, 02) with correlation p,

2r(2P; 4+ 1) times the difference in welfare between the fringe and the large player in
these two games is

A
1=5

2 _
0-2_

(261 + 1) ((B1 — 2)o1 + 2(B1 — 1)o109p + B103) + 3075 + 20102p —

2 R
(B — 1)(201 — D)oi + 2(281 — 1)B10102p — pi2f —1) ,

=B 2
2161_—511 \(_(1 — B1)207 +2B1(1 — By)oroap — 51203)4

<0

The quantity in parentheses is minus the variance of
(1= Bi)o1 dz} — Bros dZ¢,

which is always non-positive (zero only if p = 1 and o1/5; = 02/(1 — 1), i.e. shocks
are such that no trade is required to achieve first best).

Therefore, if §; < 1/2 then the welfare of the fringe before merger is greater than
the utility of this segment after merger. m

Proof of Proposition [8,  Denote ¢ = %/k(r/2). Then fringe optimality implies
that
[qb", b" + qb"]

P+b1F + PQ = - _ ,

(62)

53



Given this, the large player’s value function can be found by solving . We find
that the large player’s value function is characterized by the matrix

AF 1 —bL /2 — bt + qprbt /bF —q(br + pr)
14 2¢(1 + b /bF) —q(b" +pr) gb" /bR (0" +pr) |
We would like to find the selling rate ¢ that maximizes
1 ] b /2(1 4 gb® 0" + q) 4 q(b" + b7
—L ] (T4 gbh/bF +g)(1 4 2q(1 + b"/bF))’

an expression obtained by plugging in p;, from . The first-order condition is given
by the quadratic equation

bE + 2gb% — 2(bF — (b2)2/bF + 2bF) = 0,

[1 —1]A" {

For the equilibrium value of ¢ = r/2, the left-hand side is positive, (20" + b%) (b +
b%)/4 > 0, so the large player would prefer to commit to a faster selling rate. If 20 >
bl (i.e. the large player is more than 1/3 of the market), then b% — (b%)2/bF" 4 2bF > 0
so the left-hand side goes to minus infinity as ¢ — oco. In this case, the optimal selling
rate corresponds to a finite root on [r/2,00). If 26" < b (i.e. the large player is less
than 1/3 of the market), then the optimal selling rate is infinity. =

Proof of Proposition [9] Consider a market in which aggregate shock is o dZ; per
unit of risk capacity, and the large player with bL = 1 (without loss of generality)
gets shock o, dZ, + & dZ,. Then the fringe, with risk coefficient b”, gets the shocks
(14 1/b")o — o1,) dZ; — 6 dZ,. Then

ar_ v -3 -1
or(3bF +1) [ -1 " |’
so the large player’s welfare is
bF s b+ 1 I L 2,
m<_3(0L+0)_2(0L<b—FU_0L)+0)+b( 0oL +57)
@)=t » 02 —200p
C2r(3bF + 1) T+ lon= o)+ =
Differentiating (b;);jF with respect to b, we obtain

(26F — 1)(3b" + 1) = 3((6)2 =) 3(bF)2+26F =1 (3bF —1)(" + 1)

(3bF + 1)2 B E S VN C VN TR

which is less than 0 if and only if b*" < 1/3. Hence, as the size of the fringe increases
(i.e. bF falls), the welfare of the large player rises if b" < 1/3, i.e. the large player is
less than 1/4 of the market. m
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B.5 General Characterization.

Proof of Lemma First, let us first justify that the coefficients of the matrix
At = UTA* U are given by . Multiplying by UT on the left and U on the
right, we obtain

POU'K + (U'K)TPU b . .. .
( ) =~ + (— ) . _(Uz)TUl.

A+ AK + KA =
rA” + + 5 5\ )

In position jk, the left-hand side has (r + k + ;)ak, and the right-hand side,
(PUMUk; + (PUT)u* kg, — buu®) /2. Hence,
—biuu® + (PUu*ky, + (PUR)u¥k;

2(r + kg + ;) '

~1

To express the first-order conditions using fli, notice that
iryi _ (7 7—INT Aipr—1 —1yi iyiNT T _ —1\iNT 7~ Ai
A'Q = (U )AUIUK(U )y = (A'Q)YU=((U")) KA.
Multiplying the first-order condition by U on the right-hand side, we obtain
PUK + (U'K(UYY) PU = 2((U ) TK A
\—C_/
q’LZ

Entry k of this vector equation is given by

pilikuik + (QlK(U—1>'L> PUk —
—— —_——
whhg PUTEEER (U1 g, or (U EEHE0 (7-1)4)
o K o K . . K? 4
ik1iTTl —1\i ik —1\17 k ) —1\i
oy ——(U PU———(U PUNNU'——(U ),
“ _T+/€k+K( )Ty r+/<;k+K( )+ >_T+ﬁk—|—K( )

where ﬁ is the matrix that has entries #ﬁr,{j, 7 = 1...N, on the diagonal.

Performing some cancellations, we obtain

Wi PU— (1) gy (UZ—(U‘I)") —

r+k,+ K T r+r,+ K
] K —1\¢ k
_ vt (3 P
() (U ) ()
or 1 1yi
e PU— L (U1
ut (bwnk(wm) i”}Z’”K( = )) = —(r + ) PU"
U'rmrr (U7
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Proof of Proposition From symmetry, equilibrium pair (P, )) is characterized
by two parameters p and x, and takes the form

P=pl, Q=&k(I—-S/N).

Then, from symmetry player 1’s value function is characterized by the matrix

ai;r a2 ... Q12

12 Q29 ... Q929
Al =

12 Q29 ... a929

From 7 the coefficients of matrix A! satisfy the equations

+2N—l 2N—l B b+ N -1
ran Y ar K N a1z = 9 pr N
n N —1 K N —2

ra KQio — A9 — —a = pK
12 12— R N 22 N 11 p ON
K K K
Ta92 + QNCLQQ — QNQ12 = —pN
From ([15)), the first-order conditions are
N -1 N-—-1 N—1
2 -2 = 2

K N a1 K N 12 PR N

9 N -1 9 N -1 _ N —2
K N a12 K N 22 = DK N .

Using the first-order conditions to eliminate the differences a1 — a2 and a9 — ags
from the value function equations, we obtain

b N-—1
ra;n = 9 PR N
PK
ra = —
12 N
PR
ra —_——.
> N(N —1)

After substitutions, the first-order conditions become

K —§—p/£ =rpk and pr°=1rpkK 7

If k # 0, then we obtain]

b d N —2
= —— an R=T .
P Nr 2
34If k = 0, then the solution is degenerate with a,; = —b/2, a12 = a2 = 0, and p can be any

number.
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Notice that for any vector X whose coefficients add up to 0, SX =0, so QX = kX,
and hence any misallocation gets traded to efficiency exponentially at rate x. This
completes the proof. m
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