
Predicting and Understanding Initial Play∗

Drew Fudenberg† Annie Liang‡

First version: November 14, 2017

This version: April 3, 2019

Abstract

We use machine learning to uncover regularities in the initial play of matrix games. We first

train a prediction algorithm on data from past experiments. Examining the games where our

algorithm predicts correctly, but existing economic models don’t, leads us to add a parameter to

the best performing model that improves predictive accuracy. We obtain even better predictions

with a hybrid model that uses a decision tree to decide game-by-game which of two economic

models to use for prediction. Finally, we explore the usefulness of crowd-sourced predictions for

making better predictions, and for discovering additional relevant game features.
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1 Introduction

In most game theory experiments, equilibrium analysis is a poor predictor of the choices that

participants make the first time they play a new game. Initial play does however have regularities,

as for example shown by the fact that level-k models (Stahl and Wilson, 1994), the Poisson Cognitive

Hierarchy model (Camerer, Ho and Chong, 2004), and related models surveyed in Crawford, Costa-

Gomes and Iriberri (2013) fit initial play reasonably well in many one-shot simultaneous-move

games.

We use machine learning algorithms to discover new regularities in initial play, and to improve

upon existing models. We study the prediction of the action most likely to be played in a given game.

Throughout, we evaluate out-of-sample performance, meaning we use different data for training the

model and for testing it.1 We report both the accuracy of the model and its completeness, which we

take to be the percentage of the possible improvement over random guessing, as in Peysakhovich

and Naecker (2017) and Kleinberg, Liang and Mullainathan (2017).2 Our improvements on existing

theories of initial play are of interest in their own right, but our methods for using machine learning

to extend and inform modeling are more general. Their success here suggests that using machine

learning techniques to inform modeling may be useful in other domains within economics as well.

Our investigation proceeds in the following steps, which we first briefly summarize, and then

explain in more detail below.

(A) First, we train a decision tree to predict play in some past experiments. We study the

games where machine learning models predict well and existing models do not, which leads us to

formulate a one-parameter extension of level-1 play, level-1(α), that makes better predictions.

(B) Next we run experiments on games with randomly determined payoffs, and use that data

to algorithmically generate new games that are designed to display behaviors that are not captured

by level-1(α).

(C) We then elicit play on the algorithmically generated games and train decision trees on the

new data. These decision trees suggest that, in the new games, whether an action is part of a

Pareto-dominant Nash equilibrium (henceforth PDNE) is a good predictor of whether it will be

played.

(D) Neither the level-1(α) model nor PDNE performs well when evaluated on the combined

data set of all games (lab, randomly-generated, and algorithmically-generated), but we obtain

substantially better predictions by training a hybrid model that decides when to make the level-

1(α) prediction and when to make predictions based on PDNE.

(E) Finally, we explore the use of crowd-sourced predictions. We find that the modal crowd

prediction is a better predictor than any of our initial suite of model-based predictions, and it

1 Increasing the flexibility of model—e.g. by adding additional parameters—results in weakly better in-sample fit
(where the training and testing data are the same). But increased flexibility need not result in higher out-of-sample
fit, as more complex models are more likely to overfit to the training data.

2 Camerer, Ho and Chong (2004)’s related “economic value” compares the expected payoff that results from best-
responding to a theory’s forecast to the payoff that subjects actually obtained; this measure cannot be computed
without a prediction of the entire distribution of play.
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equals or betters the performance of our best decision tree. A hybrid model that combines PDNE

with the crowd forecast improves on each of the component models, and matches the performance

of the hybrid model combining level-1(α) and PDNE. Studying games in which the crowd predicts

correctly, but level-1(α) and PDNE do not, suggests features that may be useful in future work.

We now go into more detail for each of the steps above.

(A) Where and why do our decision trees perform better than level-1?

The initial data set we consider consists of play in symmetric 3 × 3 matrix games from six

experimental game theory papers. In 72% of these games, the modal action was the action that

maximizes expected payoff against the uniform distribution, i.e. the level-1 action.3 Although

the level-1 model performs quite well, our relatively crude machine learning techniques (decision

trees built on a set of features that describe strategic properties of the available actions) lead to

a substantial improvement.4 To understand the regularities that allow this improvement, we then

examine the 9 (out of 86) games where play is predicted correctly by our algorithm, but not by level-

1. Each of these games has an action whose average payoffs closely approximate the level-1 action,

but with lower variation in possible payoffs. Players are more likely to choose this “almost” level-1

action than the actual level-1 action. One explanation for this behavior is that players maximize a

concave function over game payoffs, as if they are risk averse. This leads us to extend the level-1

model to level-1(α), which predicts the level-1 action when dollar payoffs u are transformed under

f(u) = uα (so that the usual level-1 model is level-1(1)).5 The performance of this model shows

how atheoretical prediction rules fit by machine learning algorithms can help researchers discover

interpretable and portable extensions of existing models.

(B) Algorithmic Experimental Design

The strong performance of the level-1 prediction rule, and the even better performance of level-

1(α), are interesting in their own right, but leave open the question of how widely these findings

extend beyond our specific set of laboratory games. We would like to understand how generally

the level-1 model is a good description of modal behavior, and also identify the games where it

predicts poorly and what behaviors it misses. To do this, we need data on play in new games.

Our first step was to construct games with randomly generated payoffs. We found that the level-

1(α) model was an even better predictor of play in these random games than in the lab games,

making the correct prediction 89% of the time.6 In principle we could still identify new regularities

by examining data on a sufficiently large set of randomly generated games, but it is more efficient

to focus attention on games where behavior is less likely to conform to the predictions of level-1(α).

3 The best-performing version of the Poisson Cognitive Hierarchy model, which extends the level-k model by
assuming that types best respond to a Poisson distribution over lower level types, is equivalent to the level-1 model
when its free parameter τ is estimated from training data. See Section 3.2.

4 See Table 2 in Section 3.2 for accuracy and completeness estimates.
5 As we discuss in Section 3.2, allowing for risk aversion parameter to generate better predictions has many

precedents in the experimental literature.
6 As discussed in Section 4.1, this is partly because the games with randomly generated payoffs tended to be

“strategically simpler”: compared to the lab games, the games with random payoffs were more likely to be dominance
solvable, more likely to include a strictly dominated action, and less likely to have three or more pure-strategy Nash
equilibria.
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To generate such games, we used an algorithmic approach: First, we trained a rule for predicting

the frequency of level-1(α) play based on the game matrix. Then, we generated payoff matrices at

random, filtered out all the games where the predicted frequency of level-1(α) play was over 50%,

and repeated until we had a set of 200 games.

(C) Learning From the the New Data

We elicited play in these “algorithmically designed” games on Amazon Mechanical Turk (MTurk)

with 40 subjects per game. The data from these games showed that the algorithmic game gen-

eration procedure was effective in producing games where level-1(α) performed poorly. Moreover,

a decision tree trained on this data substantially outperforms level-1(α) on this data, suggesting

that there are regularities in initial play that are not captured by level-1(α). Directly consulting

this tree did not yield new insights, since the best decision tree was complex and hard to interpret.

But a simple version of the decision tree (restricted to just two decision nodes) returns predictions

consistent with Pareto Dominant Nash equilibrium (PDNE).

(D) Hybrid Models

Our findings from the new games demonstrate that level-1(α), while highly predictive of play in

the lab games and randomly-generated games, is outperformed in other games by models such as

PDNE that depend on both player’s payoffs, and so are more suggestive of strategic behavior. This

suggests that we could further improve both our predictions and our understanding of initial play

by learning which games are well-predicted by level-1(α) and which games are better predicted by

PDNE.

Thus, we combine the level-1(α) model and PDNE into a hybrid model that first chooses between

the level-1(α) model and PDNE, and then makes the corresponding prediction. To do this, we train

regression trees to forecast the accuracies of these two ways of making predictions, and then use

the model with the higher predicted accuracy. Our combination of the easily-interpreted level-1(α)

model and PDNE is a hybrid “meta-model” that uses an algorithmic structure to combine simple

behavioral/economic models. This hybrid model outperforms either of its parts, which shows that

there are useful methods that straddle the “behavioral versus algorithmic” dichotomy.

(E) Crowd-Sourced Predictions

Finally, we consider another way to search for predictable patterns that are not captured by

current models: We give MTurk participants payments for correctly predicting modal play. Specif-

ically, subjects were shown a set of games and asked, for each game, to pick the action that they

thought was most frequently played. We find that the “crowd forecast”—predict the most popular

crowd prediction—predicts better than either level-1(α) or PDNE, and it outperforms the level-

1(α)-PDNE hybrid in the games with randomly generated payoffs, while doing about the same

in the lab and algorithmically-generated games. Moreover, we find that the distribution of these

predictions is significantly different than the distribution of play, so the predictions are not simply

“proxy plays.”

We then construct hybrid models using the crowd data. A hybrid model combining the crowd

forecast with PDNE predicts better than either of its component models. In contrast, because

the crowd forecast and level-1(α) predictions are highly correlated with each other, the hybrid

3



combining level-1(α) and the crowd forecast does not yield an improvement over the crowd forecast

on its own. Because there are only 19 (out of 486) games in which the crowd predicts correctly,

while level-1(α) and PDNE do not, we could not further improve prediction by combining all three

models. Studying these games did however allow us to identify some game features that may help

predict play in future data sets, such as the product of the players’ payoffs in a Nash equilibrium.

1.1 Background Information and Related Work

As the Crawford, Costa-Gomes and Iriberri (2013) survey shows, there is an extensive literature

that models initial play in matrix games. Most of these papers use some variant of “cognitive

hierarchies,” whose starting point is the specification of a “level-0” or unsophisticated player who

is assumed to assign equal probability to each action. The various models then use the level-0 type

to build up a richer specification of play.7

The simplest model of initial play is “level-1,” which assumes that the whole population plays

a best response to level-0. As we will see, this model does a reasonably good job of predicting

the most likely (i.e. modal) action in many games, but there is substantial room for improvement.

Our goal is to identify alternative models that are not only better at predicting play, but also

interpretable and portable. In this respect our work is analogous to the extensions of the Poisson

Cognitive Hierarchy model proposed by Leyton-Brown and Wright (2014) and Chong, Ho and

Camerer (2016), which modify the specification of level-0 play.8 Our paper is similar in spirit

to Fragiadakis, Knoepfle and Niederle (2016), which tries to identify the subjects whose play has

regularities that are not captured by cognitive hierarchies.

Our paper is also related to other papers that have focused on improving prediction of play in

games, including Ert, Erev and Roth (2011), which compares the performance of various models of

social preference (and their combinations) for predicting play in a class of extensive-form games,

and Sgroi and Zizzo (2009) and Hartford, Wright and Leyton-Brown (2016), which develop deep

learning techniques for predicting play. These papers differ from ours in that their emphasis is

predictive accuracy, instead of deriving conceptual lessons or portable models.

There is also an extensive literature on the prediction of play in repeated interactions with

feedback, where learning plays an important role; see e.g. Erev and Roth (1999), Crawford (1995),

Cheung and Friedman (1997) and Camerer and Ho (1999). In this paper, we consider only initial

play, leaving open the question of how machine learning methods can contribute to our understand-

ing of play in repeated settings.9

Costa-Gomes and Weizsacker (2007) compare elicited beliefs over play with play itself, and find

that experimental subjects both approximately act like level-1 players and also believe that others

7 Outside of the domain of matrix games, modelers sometimes specify other choices for level-0, for example
Crawford and Iriberri (2007) study “truthful” level-0’s in an incomplete-information auction.

8 Leyton-Brown and Wright (2014) replaces the specification of level-0 from uniform play with a weighted linear
model based on five game features, and Chong, Ho and Camerer (2016) defines the level-0 player to randomize only
over actions that are “never-worst.”

9 Camerer, Nave and Smith (2017) uses machine learning to predict play in a repeated bargaining game.
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act like level-1 players. DellaVigna and Pope (2017) show that untrained human subjects make

good predictions of the efficacy of different experimental incentives. Both papers are related to our

finding that the consensus crowd forecast is a good predictor of the modal action.

Our hybrid models are a form of “mixture of experts” (Masoudnia and Ebrahimpour, 2014).

They are related to methods such as “model trees” (Quinlan, 1992), which are decision trees

that select between various parameters of linear regression models, and to “logistic model trees”

(Landwehr, Hall and Frank, 2005), which replace linear regression with logistic regression to adapt

model trees to classification tasks.

2 Predictions and Their Performance

2.1 Prediction Task

Throughout the paper we consider only 3× 3 matrix games. The set of games is G = R18, and we

use g to denote a typical game.

The prediction task we study is a classification problem: given a game, we seek to predict the

action most frequently chosen by the row player (i.e. the modal row-player action in the observed

play). The classification rules for this task are easier to understand than those for predicting

distributions, and thus allow for a clearer exposition of our methods.10

For this problem, a prediction rule is a mapping f : G→ A1 from games to the set of row player

actions.

2.2 Prediction Rules

We evaluate several rules for predicting the modal action in a game. We first consider Nash

equilibrium, the level-k models of Stahl and Wilson (1995), and the Poisson Cognitive Hierarchy

model of Camerer, Ho and Chong (2004).

Uniform Nash. Predict at random from the set of row player actions that are part of a

pure-strategy Nash equilibrium profile.

Level-1. Following Stahl and Wilson (1994, 1995), define a player to be “level-0” if he ran-

domizes uniformly over his actions. The level-1 prediction rule assigns to each game the best

response to a level-0 player—we will also refer to these best responses as level-1 actions. When the

level-1 prediction is not unique, we randomize over the set of level-1 actions.

10 In an earlier version of this paper we considered the problem of predicting the distribution of play. Our results
there suggested that hybrid models have potential to be useful for that problem as well, although the improvements
were smaller than those we report here.
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Poisson Cognitive Hierarchy Model (PCHM). Following Camerer, Ho and Chong

(2004), define level-0 and level-1 as above and define the play of level-k players, k ≥ 2, to be

the best responses to a perceived distribution

gk(h) =
πτ (h)∑k−1
l=0 πτ (l)

∀ h ∈ N, h < k, (1)

over (lower) opponent levels, where πτ is the Poisson distribution with rate parameter τ .11 The

predicted distribution over actions is based on the assumption that the actual proportion of level-

k players in the population is proportional to πτ (k). We predict the mode of this aggregated

distribution.

Prediction rules based on game features. In addition to the methods described above,

we introduce prediction rules based on features that describe strategic properties of the available

actions. For each action, we define an indicator variable for whether the action has each of the

following properties: whether it is part of a pure-strategy Nash equilibrium, whether it is part of

a pure-strategy Pareto-dominant Nash equilibrium (i.e. its payoffs Pareto-dominate the payoffs

of all other Nash equilibria),12 whether it is part of an action profile that maximizes the sum of

player payoffs (altruistic in Costa-Gomes, Crawford and Broseta (2001) and efficiency in Leyton-

Brown and Wright (2014)), whether it is part of a Pareto-dominant Nash equilibrium, whether

it is level-k (for each k ∈ {1, 2, . . . , 7}) and whether it allows for the highest possible row player

payoff (optimistic in Costa-Gomes, Crawford and Broseta (2001) and max-max in Leyton-Brown

and Wright (2014)) or maximizes the minimum row player payoff (pessimistic in Costa-Gomes,

Crawford and Broseta (2001)). We also include a score feature for how many of the above properties

each action satisfies as a richer expression of how appealing the action seems.

We use a decision tree algorithm to learn predictive functions from these features to outcomes.

Decision trees recursively partition the feature space and learn a (best) constant prediction for each

partition element. We consider trees that use only a single feature to determine the split at each

node, and use the standard approach of building up the decision tree one node at a time using a

greedy algorithm. Thus the first node is the best single split, the second node is the best second

split conditional on the first, and so forth. When we say “best decision tree, ” we mean the tree

grown using this method that achieves the highest out-of-sample accuracy. Using other algorithms

such as random forests and 2-layer neural nets does not yield improvements for this data set (see

Appendix B), and the outputs of these alternative algorithms are harder to interpret, so we focus

on decision trees in the main text.

11 Throughout, we take τ to be a free parameter and estimate it from the training data.
12 Note that a unique Nash equilibrium is always Pareto-dominant.
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2.3 Performance Measure

An observation is a pair (g, a) consisting of a game g and the action a most frequently chosen by

subjects in the role of the row player in that game, i.e. the modal row-player action. Given a set

{(gi, ai)}ni=1 of n games and their modal actions, we measure the accuracy of prediction rule f using

1

n

n∑
i=1

1(ai = f(gi)).

This is the fraction of games gi in which the predicted modal action f(gi) is indeed the observed

modal action ai in that game.13

We call the ideal prediction rule the rule that assigns to each game the observed modal action

in that game, and so predicts perfectly. This benchmark is idealized because it uses knowledge of

the test set, and also because the modal action in our data may not be the one we would have

seen with more data. In Appendix D we report completeness measures relative to two alternative

benchmarks that do not have these features.14 We use the prediction rule that corresponds to

guessing uniformly at random as a naive baseline; this yields an expected accuracy of 1/3.

Unless explicitly stated otherwise, we report tenfold cross-validated prediction accuracies. This

means that we divide the games into ten folds, use the games in nine of the folds for training,

and use the remaining games for testing. The reported accuracy is averaged across the different

choices of test fold. The reported standard errors for the cross-validated prediction accuracies are

the standard deviation of prediction accuracies across choices of test sets, divided by
√

10, because

we use 10 folds (see Hastie, Tibshirani and Friedman (2009) for procedural details).15 Some of

our prediction algorithms do not require estimation from a training set, and for these prediction

algorithms we report bootstrapped standard errors.16

3 Laboratory Games

3.1 Laboratory Data

Our data on play in laboratory experiments consists of all 3×3 matrix games in a data set collected

by Kevin Leyton-Brown and James Wright (see e.g. Leyton-Brown and Wright (2014)). This data

13 We consider a related accuracy measure in Appendix C, where accuracy is the number of instances of play that
are predicted correctly. With this accuracy measure, it is more important to correctly predict the modal action in
games where the modal action is played more frequently. The performance ranking of the models could in principle
change, but we find that it stays the same.

14 The associated completeness measures are higher for all models—and in some cases substantially higher—so the
completeness measures that we report in the main text should be understood as conservative estimates.

15 This is a standard approach for computing the standard error of a cross-validated prediction accuracy, although
it ignores correlation across the folds.

16 We re-sampled our data 100 times and evaluated the model on each of these data sets. We report the standard
deviation of the prediction accuracies.
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includes 40-147 observations of play in each of 86 symmetric 3× 3 normal-games.17 Some of these

observations were row players and some were column players, but since the games we consider are

symmetric, we label all observed actions as row-player actions. Table 1 lists the number of games

and the number of observations from each paper.

Paper Games Total # of Observations

Stahl and Wilson (1994) 10 400

Stahl and Wilson (1995) 12 576

Haruvy, Stahl and Wilson (2001) 15 869

Haruvy and Stahl (2007) 20 2940

Stahl and Haruvy (2008) 18 1288

Rogers, Palfrey and Camerer (2009) 17 1210

Total 86 6887

Table 1: Original sources for the lab play data.

The subject pool and payoff scheme differ across the six papers, but all of them use anonymous

random matching without feedback: participants play each game only once, are not informed of

their partner’s play, and do not learn their own payoffs until the end of the session.

3.2 Results

Table 2 reports the accuracies and completeness measures of our prediction rules on the lab data.

When evaluating the PCHM, the best-performing τ (estimated from training data) returns the

level-1 prediction rule, so we report the performance of these two models together.18,19

Accuracy Completeness

Guess at random 0.33 0%
Uniform Nash 0.42 13%

(0.05)
Level-1/PCHM 0.72 58%
Decision tree 0.77 66%

(0.04)
Ideal prediction 1 100%

Table 2: Predicting the modal action in lab data.

We find that the PDNE rule and the uniform Nash prediction rule are only slightly better than

guessing at random. In contrast, the level-1 model achieves a substantial improvement, increasing

17 Our data set does not have individual-level subject identifiers.
18 We find that prediction error is minimized at all values of τ in the interval (0, 1.25]. The values of τ in this

range all yield prediction of the level-1 action for the games in our data sets.
19 PCHM (and other variants we consider) better fit the distribution of actions, as we showed in an earlier version

of the paper.
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completeness to 58%. The decision tree (reported in Appendix E.1) based on game features performs

better still, achieving a completeness of 66%.

Out of the 86 lab games, modal play is level-1 in 62 of the games. Moreover, there are nine

games in which the modal action is not level-1 but is correctly predicted by the decision tree. The

performance of the decision tree on those nine games gives us reason to believe that there is a

systematic pattern to play in these games, beyond what is already captured by the level-1 model.

We thus examine these games, displayed in Figure 1, and search for additional regularities.

a1 a2 a3 Actual Freq:

a1 47,47 51,44 28,43 51%

a2 44,51 11,11 43,91 19%

a3 43,28 91,43 11,11 30%

a1 a2 a3 Actual Freq:

a1 45,45 50,41 21,40 81%

a2 41,50 0,0 40,100 6%

a3 40,21 100,40 0,0 13%

a1 a2 a3 Actual Freq:

a1 0,0 35,55 100,30 34%

a2 55,35 40,40 20,0 65%

a3 30,100 0,20 0,0 0%

a1 a2 a3 Actual Freq:

a1 15,15 0,0 0,100 0%

a2 0,41 90,90 10,0 56%

a3 100,0 0,21 20,20 44%

a1 a2 a3 Actual Freq:

a1 20,20 30,40 100,30 35%

a2 40,30 40,40 60,0 65%

a3 30,100 0,60 40,40 0%

a1 a2 a3 Actual Freq:

a1 1,1 0,10 0,100 0%

a2 10,0 90,90 10,5 62%

a3 100,0 5,10 20,20 38%

a1 a2 a3 Actual Freq:

a1 35,35 39,47 95,40 11%

a2 47,15 51,51 67,15 82%

a3 40,100 15,67 47,47 7%

a1 a2 a3 Actual Freq:

a1 10,10 10,15 10,100 2%

a2 15,10 80,80 15,0 57%

a3 100,10 0,15 30,30 41%

a1 a2 a3 Actual Freq:

a1 25,25 30,40 100,31 44%

a2 40,30 45,45 65,0 52%

a3 31,100 0,65 40,40 4%

Figure 1: The decision tree correctly predicted the most frequently played action (in italics). The
level-1 action is in bold.

Examining these games reveals a common feature: In each game, some action that is not level-1

yields an expected payoff against uniform play that is nearly as high as the level-1 payoff, and

moreover has lower variation in possible row payoffs. Consider the first game in Figure 1. Action

a3 is the level-1 action in this game, but the expected payoff to action a1 is not much smaller (42 vs.

48.33), and choosing action a1 yields significantly lower variation in possible row player payoffs.20

In our data, more subjects choose action a1 than action a3. This behavior appears in all of the

20 Depending on which action the column player takes, the row player will receive one of {43, 91, 11} if he (the row
player) chooses a3, compared to {47, 51, 28} if he chooses a1.
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nine games shown above: subjects preferred actions that were “almost level-1” when those actions

yielded lower variation in payoffs.

We can modify the level-1 model to account for this regularity. Specifically, because the depar-

ture from level-1 behavior is consistent with a risk averse utility function over payoffs, we consider

an alternative model in which players maximize against a uniform distribution of opponents’ play

(as in level-1), but the dollar payoffs u are transformed under f(u) = uα. We call the resulting

model level-1(α); the standard level-1 model is nested as α = 1. Table 3 compares the prediction

error of level-1(α) with the original model.21 We find that introducing this risk aversion parameter

reduces prediction error substantially, achieving the prediction error of the best decision tree (with

an estimated value α∗ = 0.625).

By focusing our attention on the 9 games where the tree predicted correctly but level-1 did not,

our machine learning model allowed us to detect a new empirical regularity. Thus, the success of

level-1(α) demonstrates how atheoretical prediction rules can help us identify parametric extensions

of existing models that generate better predictions.

Accuracy Completeness

Level-1 0.72 58%
Decision Tree 0.77 66%

(0.04)
Level-1(α) 0.79 69%

(0.04)

Table 3: Introducing risk aversion improves level-1.

Risk aversion strikes us as a natural interpretation of the α parameter, and there is substantial

evidence that small stakes risk aversion is a better description of laboratory play choices than is

risk neutrality. That said, risk aversion is only one interpretation, and risk aversion for such small

stakes is hard to reconcile with standard expected utility theory (see e.g. Rabin (2000)).22

4 Generating New Games

The strong performance of the level-1 prediction rule, and our subsequent extension to level-1(α),

are interesting in their own right, but leaves open the question of whether this performance is

special to our specific set of laboratory games. We would like to understand whether the level-1(α)

model is generally a good description of modal behavior. If there are games in which it does not

predict well, we would like to know what these are, and what behaviors the model misses. To

answer these questions, we need a larger and more varied set of games.

21 Once again, the PCHM did not yield an improvement.
22 Rabin suggested loss aversion as an explanation for apparent risk aversion, but loss aversion is not applicable

when all of the gambles are in the gains domain, as in Holt and Laury (2002) and our data. Fudenberg and Levine
(2006, 2011) instead explain small stakes risk aversion as a combination of a self control problem and the “narrow
bracketing” proposed by Shefrin and Thaler (1988). More recently, Khaw, Li and Woodford (2018) explains small
stakes risk aversion as a result of “cognitive imprecision.”
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In a first attempt to generate such games (Section 4.1) , we constructed 200 games with randomly

generated payoff matrices. These games do not have the special structure of the experimentally

designed games, so they test the robustness of our findings, and also give us an opportunity to

discover new behaviors.

We find that the level-1(α) model is an even better predictor of modal play in these randomly-

generated games than in the laboratory games. This finding is reassuring, since it tells us that the

performance of level-1(α) in the laboratory games was not a quirk of the design of these games. But

it also means that studying play in random games is an inefficient way to uncover new regularities.

If we want games in which the level-1(α) action is not modal, we need a more sophisticated approach

for game generation.

One option would have been to hand-craft games where we conjectured that play would depart

from level-1(α). Instead, we tried to learn this structure from our data. To do this, we trained a

machine learning algorithm to predict the frequency of play of the level-1(α) action, and then se-

lected games that achieved low predicted frequencies according to this algorithm. This “algorithmic

game generation” is described in detail in Section 4.2.

4.1 Random Games

Our first auxiliary set of games consists of 200 payoff matrices generated from a uniform distribution

over {10, 20, . . . , 90}18. This scale was chosen to match the lab experiments described above,

although unlike in the previous section the randomly generated games are not symmetric. We

presented each of 550 MTurk subjects with a random subset of fifteen games, and asked them to

play as the row player.23

Subjects faced the following incentives: On top of a base payment of $0.35, they were told

that one of the fifteen games would be chosen at random, and their action would be matched with

another subject who had been asked to play as the column player. Their joint moves determined

payoffs that were multiplied by $0.01 to determine the subject’s bonus winnings (ranging from

$0.10 to $0.90).24,25

Relative to the random games, the games played in lab experiments have more pure-strategy

Nash equilibria and a higher number of rationalizable actions, as shown in Figure 2. These differ-

ences are large, suggesting that the set of lab games is indeed different from what we would expect

in a random sample.

23 Each game was shown to 25-58 subjects, and the average number of responses per game was 41.25.
24 We restricted the subject pool to MTurk participants in the United States who had an approval rate of 75%

or higher. Subjects spent an average of seven minutes on the task, and the average payment was $0.93, or $8.14 an
hour. (This is a typical hourly wage for MTurk.) The minimum payment was $0.45 and the maximum payment was
$1.25; the standard deviation of payments was $0.23. The complete set of instructions can be found in Appendix F.

25 In addition to eliciting play, we asked subjects to volunteer a free-form description of how they made their
decisions. A selection of answers can be found in Section G of the Appendix.
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Figure 2: (a) Percentage of games with zero, one, two, three, or at least four pure strategy Nash
equilibria; (b) Percentage of games with one, two, or three actions surviving iterated elimination
of (pure-strategy) dominated actions.

Table 4 reports prediction accuracies for this new data set. We find that level-1(α) again

improves upon the level-1 model.26 Moreover, both models perform very well—in fact, achieving

higher predictive accuracies than they did on the lab data. The level-1(α) model predicts the modal

action correctly in 92% of new instances, and achieves 88% of the achievable improvement over

random guessing. (Note that in contrast to the lab data, the level-1 variants are not outperformed

by the best decision tree.27)

Accuracy Completeness

Guess at random 0.33 0%
(0.02)

Uniform Nash 0.57 36%
(0.03)

Decision Tree 0.86 79%
(0.02)

Level-1 0.87 81%
(0.01)

Level-1(α) 0.92 88%
(0.02)

Ideal prediction 1 100%

Table 4: Predicting the modal action in the random games.

The improved performance of level-1 here may be due to differences between the games that

were crafted by experimenters and those with randomly generated payoffs, as discussed above. A

second possibility is that the improvement is driven by differences between the laboratory subjects

26 The value of α estimated on this data set is α = 0.41.
27 Although the level-1 model can always be reproduced by the decision tree algorithm given the set of features we

have defined, the estimated tree varies depending on the training data. Table 4 thus says that it would be better to
simply force the decision tree to use the level-1 model, instead of giving it the flexibility to learn alternative models
from our feature set. Note also that there may well be other feature sets and other learning algorithms that would
do better than the level-1 model here.
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and the MTurk subjects. Indeed, we might expect that MTurk subjects are less sophisticated

about the strategic aspects of the game, and hence are more likely to choose the level-1 action. To

separate this subject-based explanation from the previous game-based explanation, we ran another

experiment in which we asked MTurk subjects to play the lab games. In this new data, the level-1

model achieved a prediction accuracy of 0.68, which is much closer to the prediction accuracy of

0.72 we found for the lab games (Table 2) than the accuracy in the random games of 0.87 (Table 4).

This suggests that the improved performance of level-1 on the new data set of randomly generated

games is driven at least in part by the difference in the strategic structures of the games—our

subsequent results will reinforce this view.28

Collectively, these results reveal that the structure of the laboratory games made level-1 play

less prevalent, which suggests that subjects are most likely to depart from level-1 play exactly in

games that are “strategically interesting.” Thus, to identify regularities in play beyond level-1(α),

we need more games that will induce such behaviors. One approach would be to hand-craft games

along the lines of the original lab games, or to select games with specific features expected to lead

to interesting findings, as in Stahl (2000). Instead, as described in subsection 4.2, we automated the

game generation procedure by conjecturing many different strategic features that could be relevant,

and then using machine learning to select which games were more likely to induce departures from

level-1(α) play.

4.2 Algorithmic Experimental Design

We first trained an algorithm on the data in both the lab games and the randomly-generated

games to predict the frequency which which the level-1(α∗) action was played. Throughout, we fix

α∗ = 0.625 (our estimate of α from Section 3.2).29

For training, we used bootstrap-aggregated decision trees (also known as bagged decision trees).30

These trees were built on a feature set describing various strategic properties of the game (see Ap-

pendix A.2 for the complete feature set), chosen based on our conjectures of what might determine

28 Many authors have considered how much behavior in laboratory experiments resembles behavior on MTurk.
While there are some differences, the consensus seems to be that the two types of data are similar. See e.g. Paolacci,
Chandler and Ipeirotis (2010) “experimenters should consider Mechanical Turk as a viable alternative for data
collection”; Rand (2012) “. . . evidence that data collected (on MTurk) is valid, as well as pointing out limitations”
; Mullinix et al. (2015) “The results reveal considerable similarity between many treatment effects”; Thomas and
Clifford (2017) “. . . insufficient attention is no more a problem among MTurk samples than among other commonly
used convenience or high-quality commercial samples, and. . . that employing rigorous exclusion methods consistently
boosts statistical power without introducing problematic side effects.” Finally, Snowberg and Yariv (2018) find that
behavior in their MTurk data is closer to that in their nationally-representative survey data than is the behavior in
their student data.

29 We needed to fix the value of α since we could not anticipate the best-fit value of α for play on the yet-to-be
designed games.

30 This algorithm generates bootstrap samples of the training data and uses each sample to train a tree. The
predictions of the different trees are averaged for out-of-sample prediction. Bagged trees are generally considered
more predictive but less interpretable than the single decision tree (Breiman, 1994). To generate games where level-
1(α∗) is not common, we care only about successful predictions, so we use tree ensembles, while elsewhere we rely on
single decision trees to make it easier for us to interpret our results.
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the attractiveness of the level-1(α∗) action.

For example, one feature we thought might matter is whether the level-1 action is part of a

pure-strategy Nash equilibrium. Another feature is the difference between the sum of possible row

player payoffs given play of the level-1 action and the next highest row sum. In the game below,

this “row sum gap” takes a value of 20:

a1 a2 a3 Row Sum

a1 40, 40 20, 30 0, 20 60

a2 30, 20 20, 20 100, 10 150

a3 20, 0 10, 100 100, 100 130

Yet another feature is whether the game contains a Nash equilibrium that yields “high payoffs”

(specifically, at least 75% of the largest payoff sum31) and is not level-1—for example, the action

profile (a3, a3) above.

After training a tree ensemble to predict the frequency of play of the level-1(α∗) action, we used

it to generate a new data set of symmetric games. We started by randomly generating a set of 200

games whose row player payoffs were selected from the empirical payoff distribution from the lab

data set, with the column player payoffs chosen symmetrically. Then, we applied our algorithm to

predict the frequency of play of the level-1(α∗) action in those games. We eliminated all games in

which the predicted frequency was larger than 1/2, and randomly generated new games to replace

them, repeating this procedure until all games were predicted to have less than 1/2 frequency of

play of the level-1(α∗) action.32,33

A typical game generated by the algorithm is the following:

a1 a2 a3
a1 90, 90 30, 80 45, 30

a2 80, 30 55, 55 37, 5

a3 30, 45 5, 37 70, 70

Note that this game has three pure-strategy Nash equilibria: (a1, a1), (a2, a2), and (a3, a3). The

level-1(α∗) action is a2, but the expected payoff of a1 against uniform play is close to the payoff

from a2, and a1 is also part of a Pareto-dominant Nash equilibrium.

In general, while the randomly-generated games were strategically simple, the algorithmically

designed games exaggerate strategic complexity. For example, Figure 3 replicates Figure 2 with

31 We chose the cutoff 75% somewhat arbitrarily, although in the subsequent Section 6 we introduce variations on
this feature that use different cutoffs.

32 The threshold 1/2 was chosen somewhat arbitrarily. Our tree ensemble very rarely predicted frequencies lower
than 0.4, so our choice of 1/2 was guided by our desire to both have a low threshold and also have sufficiently many
instances where the frequency of level-1(α∗) is predicted to be below the threshold.

33 Our approach is related in spirit to adversarial machine learning Huang et al. (2011) and generative adversarial
networks Goodfellow et al. (2014) in that we are generating instances to trick the level-1(α∗) model. Here, though,
our goal is to design new instances for data collection.

14



the new games added in, and shows that the distribution of the number of pure-strategy Nash

equilibria in the new games (as well as the number of rationalizable actions) first-order stochastically

dominates the corresponding distribution in the lab games.

We elicit play in these new games on MTurk (using an identical experiment to the previous

section), collecting 40 observations per game.

Figure 3: (a) Percentage of games with zero, one, two, three, or four pure strategy Nash equilibria
(no games had more than four Nash equilibria); (b) Percentage of games with one, two, or three
actions surviving iterated elimination of (pure-strategy) dominated actions.

5 Preliminary Lessons from the New Data

Table 5 reports the prediction accuracies of our best decision tree and of the models used above.

We evaluate these approaches first on the new set of algorithmically designed games, and then

separately on the full data set of games (consisting of the lab games, the randomly-generated

games, and the algorithmically designed games).

Algo Games Only All Games

Accuracy Completeness Accuracy Completeness

Guess at random 0.33 0% 0.33 0%
Uniform Nash 0.43 15% 0.49 24%

(0.03) (0.02)
Level-1 0.36 5% 0.64 46%
Level-1(α) 0.38 7% 0.68 52%

(0.02) (0.02)
Decision Tree 0.67 51% 0.70 55%

(0.03) (0.03)
Ideal prediction 1 100% 1 100%

Table 5: Predicting the modal action
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The algorithmically designed games were selected to be poor matches for the level-1 models,

and we find that they succeed in this goal: the level-1(α) model correctly predicts the modal

action in only 38% of games, achieving a completeness of 7%. (Recall that level-1(α) achieved

an completeness of 58% for the lab games and 84% for the randomly-generated games.) In the

aggregated data, the accuracy of level-1(α) is 0.66 and its completeness is 34%.34

The best decision tree in the algorithmically designed games is complex and hard to interpret,

so we present the best 2-split decision tree instead, which achieves an accuracy of 0.6235; this is

still substantially better than either uniform Nash or level-1(α) but below the 0.67 of the best tree.

This 2-split tree, shown in Figure 4, is very simple: if there is a Pareto-dominant Nash equilibrium,

the tree predicts it; otherwise the tree defaults to action a3.
36

Is action a1 part of a
Pareto-dominant NE?

predict a3predict a2

Is action a2 part of a
Pareto-dominant NE?

predict a1

NoYes

NoYes

Figure 4: Best 2-split decision tree for the algorithmically designed games.

Motivated by this tree, we introduce the following rule:

Pareto-Dominant Nash Equilibrium (PDNE). We predict at random from the set of row

player actions ai such that (ai, aj) is a pure-strategy Nash equilibrium whose payoffs Pareto-

dominate the payoffs in every other pure-strategy Nash equilibrium. If this set is empty, we predict

an action uniformly at random.

This PDNE rule substantially outperforms level-1(α) on the algorithmically generated games,

achieving an acccuracy of 0.65 and completeness of 48% (compare to 0.38 and 7%). It does not

outperform level-1(α) on the set of all games, where it achieves an accuracy of 0.56 and completeness

of 34% (compare to 0.68 and 52%).37

34 The best-performing value of α for the algorithmically designed games is 0.97, but given that play in these games
is poorly predicted by the level-1(α) model, it is not clear that this parameter estimate has a meaningful economic
interpretation.

35 The standard error of the accuracy is 0.02.
36 When we report trees such as this one, we report the tree estimated on the full data set, since the trained tree

potentially fluctuates across choices of training data. This 2-split tree was produced on seven of the ten training sets.
37 Note that the differences in the performance of PDNE across these data sets is not simply because there are
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The differences in play and model fit across data sets highlights the importance of the experimental-

design process for the resulting findings. It also raises the question of which distributions over games

are the most economically relevant. We find this question difficult to answer, in part because 3× 3

games are themselves a simplified representation of real-world interactions. In what follows we will

report results on the combined set of all games.

Note also that while PDNE and level-1(α) respectively achieve accuracies of 0.56 and 0.68 on our

full data set, the best decision tree achieves an accuracy of 0.70. This increased accuracy suggests

that there is additional structure to discover. One possibility is that there are regularities beyond

PDNE and level-1(α), but another possibility is that PDNE and level-1(α) are good predictors of

play in different games, so that neither model on its own performs well on our aggregate data set.

Table 6 provides evidence supporting the second hypothesis:

XXXXXXXXXXXPDNE

Level-1(α)
Right Wrong

Right 155 115

Wrong 175 41

Table 6: There are many games where level-1(α) predicts correctly while PDNE does not, and
vice versa.

This suggests that, if we can predict when PDNE is a good model of play and when level-1(α) is

better, we can improve upon both component models. We explore this idea in the next section.

6 Hybrid Models

There are many possible ways combine level-1(α) and PDNE to make predictions. Perhaps the

simplest is to use a “lexicographic rule” that predicts the PDNE when a PDNE exists and otherwise

uses level-1(α). This rule improves on both of its components in the overall data set, due to its

superior performance on the algorithmically generated games, but does worse than level-1(α) both

on the lab games (which may have been designed to elicit non-Nash play) and also on the random

games.38

We would like to find a better way to combine these two prediction rules, and moreover do so in a

way that can be extended to combine arbitrary classification rules. To this end, we take the following

approach: First, we estimate each model on the training data (if it has free parameters—note that

PDNE does not). We then use the estimated model to predict the modal action in each game in

the training data. Thus for each model we have a binary vector of accuracy outcomes (“correctly

predicted” versus “incorrectly predicted”) across the games in the training data. We then fit a

more Pareto-Dominant NE in the algorithmically-generated games. In fact, the fraction of Pareto-Dominant NE is
largest in the set of random games (70%), and comparable in the laboratory games (52%) and the algorithmically
designed games (59%).

38 The lexicographic rule has accuracy 0.72 on the combined data, 0.52 on the lab games, and 0.71 on the random
games.
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regression tree39 to predict a probability with which the model chooses the the correct action,

based on the feature set described above in Section 4.2 (and reported in Section A.2). This returns,

for each model, an algorithm that maps game features into a probability that the model’s prediction

is correct.

On out-of-sample games, we use the “accuracy prediction algorithms” to predict the probability

of an accurate prediction under either model. We then select the model with the larger (predicted)

accuracy, and use that model to predict the modal action. This procedure is depicted in Figure 6:

pA(x) > pB(x) pA(x)  pB(x)

Features x describing
the new game

Predicted probability (respectively) of accurate
prediction by Model A and Model B:

(pA(x), pB(x))

Predict using
Model A

Predict using
Model B

Figure 5: Hybrid models

This model selection procedure is a form of “mixtures of experts” (Masoudnia and Ebrahimpour,

2014). There are many possible ways to use game features, and we do not claim that ours is optimal.

We chose it because it is relatively simple to implement and interpret. Even with this simple

formulation, we were able to achieve notable improvements in performance, but more sophisticated

methods might do better still.

Hybrid models are closely related to model trees (Quinlan, 1992; Landwehr, Hall and Frank,

2005), which are decision trees whose branches lead to linear (or logistic) regression models. The

hybrid models we use similarly embed models at the nodes of a decision tree, but our component

models are simple economic/behavioral models. Our procedure is also related to the literature on

forecast combinations (e.g. Timmermann (2006)), where different structural models are averaged

using weights determined according to past performance.40,41

In general, the regression trees used to predict the accuracies of the two component models can

39 Regression trees are decision trees where the predicted outcome is a real number.
40 For example, the weights might correspond to posterior probabilities as in Bayesian model averaging.
41 For example, Negro, Hasegawa and Schorfheide (2016) combines different dynamic stochastic general equilibrium

(DSGE) models for improvements in forecasting real GDP growth. Our work differs in that we assign a single model
to each game, using properties of the game itself to determine this assignment, rather than assigning the same average
to all of the games
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vary across folds of cross-validation. But for our hybrid model combining level-1(α) with PDNE,

the best-cross validated prediction trees (reported in Appendix E.2.1) have only two splits each,

and are the same on 9 of the 10 folds. The resulting rule for model assignment is depicted in Figure

6 below:

Is there a symmetric NE that 
achieves 75% of max possible 

payoffs and is not level 1?

No Yes

Is there a level 1 action that is also part of 
a Pareto-dominant NE?

Yes

Level-1(↵)

#obs: 196

Actual accuracies:
level-1(↵)—0.80
PDNE—0.29

Is there an action profile that
maximizes both players’ payoffs?

No Yes

PDNELevel-1(↵)

#obs: 60

Actual accuracies:
level-1(↵)—0.42
PDNE—0.22

#obs: 116

Actual accuracies:
level-1(↵)—0.22
PDNE—0.72

PDNE

#obs: 114

Actual accuracies:
level-1(↵)—0.89
PDNE—0.94

No

Figure 6: Assignment of games to models

This tree partitions the space of games into four classes. In two of these classes, the tree

predicts a PDNE.42 In the other two classes, the tree uses level-1(α). Of the games assigned to

level-1(α), 74 games have a PDNE, so the the tree does not always pick the PDNE model even

when a Pareto-dominant Nash equilibrium exists.43

The specific feature of whether the symmetric NE achieves 75% of the max possible sum of

player payoffs was chosen somewhat arbitrarily, but the prediction accuracy of the hybrid model is

essentially unchanged when we replace 75% with 70% or 80%. (The accuracy is the same up to two

42 Note that when there is a profile that maximizes both player’s payoffs, it is guaranteed to be a PDNE, so the tree
only uses PDNE to make its prediction when there is a PDNE to predict. Note also that a unique Nash equilibrium
is by definition a PDNE.

43 We do not include the source of the game—lab-designed, algorithmically-designed, or randomly-generated—as
a feature for the tree to use. Nevertheless it is possible that other features proxy for this, and the tree assigns
games to models based on which data set the game belongs to. This turns out not to be the case: of the games
assigned to PDNE, 13 come from the lab data set, 101 from the randomly-generated games, and 116 from the
algorithmically-generated games.
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significant figures.) Our qualitative takeaway from this decision tree is that the important feature

is whether there is a symmetric NE with “high” payoffs that does not include the level-1 action.

We report the accuracies of PDNE and level-1(α) on each of these four classes in Figure 6.44 By

inspecting the tree, we see that only a little accuracy is gained by using PDNE in the 114 games

with a level-1 action that is part of a Pareto-dominant Nash equilibrium, as here both PDNE and

level-1(α) predict quite well.45 The gains from using PDNE are much greater in the other 116

games where it is used. In these games, PDNE is right 72% of the time while level-1(α) is worse

than guessing at random. These games all contain a very good Nash equilibrium (Pareto-dominant,

symmetric, yields maximal payoffs for both players) that does not correspond to the level-1 action.

For example:
a1 a2 a3 Frequency of Play

a1 90, 90 30, 80 45, 30 72%

a2 80, 30 55, 55 37, 5 28%

a3 30, 45 5, 37 70, 70 0%

In this game, action a2 is level-1(α) but the action profile (a1, a1) is a Pareto-dominant Nash

equilibrium and also maximizes both player’s payoffs. We expect that PDNE will be a better

prediction than level-1(α) in similar games beyond our data set.

Notice that the hybrid model is not guaranteed to improve upon the (out-of-sample) predictive

performance of either base model, as it runs the risk of overfitting due to its greater complexity.

Nevertheless, we find that “level-1(α) + PDNE” substantially improves upon the performance of

both base models in the data set of all games. Moreover, for the lab data we used to begin our

analysis, we find that the hybrid model weakly improves upon the level-1(α) model as well.46

44 We set α = 0.41, which is the estimate on the full data set. In practice the value of α fluctuates across the
different choices of training data, so the prediction accuracies reported above are not exact.

45 Note that there is a gap between the feature that describes whether the level-1 action is part of the Pareto-
dominant Nash equilibrium and this hybrid model, because the latter predicts the level-1(α) action. Since the
level-1(α) action and the level-1 action are not always the same, there are multiple instances in which the level-1(α)
prediction is wrong even though the level-1 action is part of the unique Pareto-dominant Nash equilibrium.

46 The hybrid model also outperforms both component models in the set of algorithmically generated games. The
hybrid model does not improve on level-1(α) on the random games where level-1(α) already achieves a predictive
accuracy of 91%.
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All Games Lab Games

Accuracy Completeness Accuracy Completeness

Guess at random 0.33 0% 0.33 0%
PDNE 0.56 34% 0.38 7%
Level-1(α) 0.68 52% 0.79 69%

(0.02) (0.02)
Level-1(α) + PDNE 0.79 69% 0.82 73%

(0.03) (0.03)
Ideal prediction 1 100% 1 100%

Table 7: The level-1(α) + PDNE hybrid model improves upon the performance of both component
models.

Our analysis above considers a specific hybrid model that combines two interpretable models.

In principle, hybrid models can be built from a wide array of component models. For example,

instead of combining two behavioral/economic models as we do here, we could combine a model

such as level-1(α) with an algorithmic model, such as lasso or logistic regression. This kind of

model would further blur the distinction between “behavioral” and “algorithmic” approaches. For

more complex problem domains, such as predicting the distribution of play, we might consider

hybrid models that combine two different structural models of play—for example, PCHM and a

mixture-model of level-k types (as in Costa-Gomes, Crawford and Broseta (2001)). Yet another

possibility is to combine a model based on the game matrix (as all of the approaches discussed so

far are) with more “unconventional” models that use auxiliary data. We pursue this option below

by using human forecasts as one component of the hybrid model.

7 Crowd-Sourced Forecasts

7.1 Human Predictions

We asked human subjects on Mechanical Turk to predict the most likely action in the laboratory

games and algorithmically generated games.47 We informed subjects that these games had been

played by real people, and asked them to predict the action that was most likely to be chosen by

the row player. On top of a base payment of $0.25, subjects received an additional $0.10 for every

question they answered correctly. Figure 7 shows a typical question prompt presented to subjects,

and the complete set of instructions can be found in Appendix F.

47 Subjects were not screened based on level of exposure to game theory. The vast majority of answers suggest a
lack of prior exposure to game theory, but some subjects did use terminology such as “dominance” in their post-survey
responses (see Appendix G). The initial part of our experiment consisted of an introduction to matrix games, and
we allowed subjects to proceed to the main experiment only after correctly reporting the payoffs for a fixed action
profile in two example matrices (see Appendix F). All subjects eventually answered both comprehension questions
correctly.
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Figure 7: A typical question prompt presented to Mechanical Turk subjects in the single action
treatment. The “orange player" is the row player.

Our experiment generated 40 crowd predictions for each game. We first consider the most direct

use of these crowd predictions, which is to predict that the modal action is the most popular crowd

prediction. We call this the crowd forecast. Table 8 shows that this simple crowd forecast performs

remarkably well, improving upon the performance of the decision tree, PDNE, and level-1(α) for

predicting play in the set of all games.

Accuracy Completeness

Guess at random 0.33 0%
PDNE 0.56 34%
Level-1(α) 0.68 52%

(0.02)
Decision Tree 0.70 55%

(0.03)
Crowd 0.77 66%
Ideal prediction 1 100%

Table 8: Crowd forecasts are predictive.

One potential explanation for the performance of the crowd forecast is that subjects predict

the actions that they themselves would choose. This hypothesis would imply that each prediction

is equivalent to an observation of play, so that with sufficiently many predictions, the distribution

of crowd predictions would approximate the distribution of play arbitrarily well. We show below

that this is not a complete explanation of the performance of the crowd forecasts.

7.2 Do People Predict Their Own Play?

Below we compare the distributions of play with the distributions of crowd predictions. Formally,

we conduct chi-squared tests of the null hypothesis that our samples of game play and samples

of crowd predictions are drawn from the same distribution. If the crowd predictions and game
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play were indeed drawn from the same distribution in every game, then the p-values for the chi-

squared test would follow a uniform distribution. But we reject (under a Kolmogorov-Smirnov test)

that the distribution of p-values is uniform with p ≈ 10−8 for the lab games, p = 0.0027 for the

randomly-generated games, and p ≈ 10−15 for the algorithmically-generated games (see Figure 8

below).48

Figure 8: Left: Distribution of p-values across our set of lab games; Center: distribution of p-
values across our set of randomly-generated games; Right: distribution of p-values across our set
of algorithmically-generated games. For each set of games, the observed distribution of p-values is
statistically different from uniform.

Thus, crowd predictions are at least in some cases drawn from a different distribution over

actions than actual play. This suggests that it may be possible to improve upon the naive crowd

rule by separating those games in which the crowd predicts well from those in which it predicts less

well.49

7.3 Hybrid Models with Crowd Predictions

We thus turn to hybrid models that combine the crowd forecast with the models considered earlier:

the level-1(α) model and PDNE.

48 Our finding is similar in spirit to that of Costa-Gomes and Weizsacker (2007), who find (for a set of 14 lab
games) that stated beliefs are closer to the uniform distribution than the actual distribution of play is.

49 That the distribution of p-values is not uniform does not necessarily imply that there are games in which the
crowd predicts better and games in which the crowd predicts worse. To take an extreme example, if all subjects
always correctly predicted the modal action, the distribution of p-values would be far from uniform.
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Accuracy Completeness

Guess at random 0.33 0%
Level-1(α) 0.68 52%

(0.02)
PDNE 0.56 34%
Crowd 0.76 64%
Level-1(α) + Crowd 0.76 64%

(0.02)
Crowd + PDNE 0.78 67%

(0.02)
Level-1(α) + PDNE 0.79 69%

(0.03)
Ideal prediction 1 100%

Table 9: Prediction accuracies for the hybrid models involving crowd forecasts.

The hybrid model that combines the crowd forecasts with PDNE performs about as well as

the hybrid level-1(α) and PDNE model. We do not display its “model assignment tree”—the

analog of Figure 6—because here the estimated tree varies too much from fold to fold. The model

that combines level-1(α) with the crowd forecasts performs much less well. To understand the

relative performance of the different hybrid models, it is useful to consider the correlations of their

constituent models’ predictions. The crowd predicts the level-1(α) action in 276 games (out of

486), so the predictive accuracies of these two approaches are highly correlated, as further detailed

in the left table below:

XXXXXXXXXXXCrowd

Level-1(α)
Right Wrong

Right 299 74

Wrong 24 89

PPPPPPPPPCrowd

PDNE
Right Wrong

Right 198 175

Wrong 72 41

Table 10: Left: comparison of the crowd forecast and level-1(α). Right: comparison of the crowd
forecast and PDNE.

There are only 24 games in which the level-1(α) prediction is correct while the crowd prediction

is not. This greatly limits the potential of hybrid models combining crowd forecasts with level-1(α).

Indeed, even if we learn a perfect assignment of games to models, the best achievable accuracy for

the data set of all 486 games is (486−89)/486 = 0.82. In contrast, PDNE’s prediction errors are far

less correlated with the prediction errors of the crowd, which makes that hybrid more successful,

just as having less correlated models is useful when building forecast combinations (Timmermann,

2006). When combining PDNE and the crowd predictions, a perfect assignment of games to models

would attain accuracy of (486−41)/486 = 0.92; the fact that we only achieve accuracy of 0.78 with

this hybrid shows there is scope for considerable improvement in our model assignment algorithm.

The correlation structure across model predictions also explains why the extension of our hybrid

model to all three models (selecting whichever of PDNE, level-1(α), and the crowd forecast is
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predicted to perform best) does not improve on the PDNE-crowd hybrid.50 In fact there are only

19 games (roughly 4% of the data set) in which the crowd prediction is correct, while both the

PDNE prediction and the level-1(α) prediction are wrong.51

This small number of games is not enough for the addition of crowd predictions to our hybrid

of level-1(α) and PDNE to result in better predictions. However, as in our exercise in Section

3.2, examining these games can help us identify features that the crowd seems to use but are not

captured by either of those models.

One thing we observe is that the crowd outperforms level-1(α) and PDNE on games where some

action is not part of a Nash equilibrium that isn’t Pareto-dominant, but is nonetheless much more

appealing than other equilibria, as in the game below:

a1 a2 a3 Frequency of Play
a1 93, 93 10, 60 70, 53 53%
a2 60, 10 30, 30 100, 33 40%
a3 53, 70 33,100 10, 10 7%

Here, the crowd forecast correctly predicts action a1. This action is part of a Nash equilibrium

profile, but the corresponding payoffs (93, 93) do not Pareto-dominate those of the two other pure-

strategy Nash equilibria—(33, 100) and (100, 33). One way to capture this behavior may be to

include a feature for whether there is a Nash equilibrium whose product of payoffs is “much larger”

than that of any of the other Nash equilibria, or to compare the product of Nash equilibrium payoffs

to those of all other action profiles.

Although our data has only a small number of games with this particular structure, we conjec-

ture that with a data set that had a higher frequency of games like those above, we would find large

improvements from crowd forecasts over level-1(α) and PDNE alone. If this is true, it would further

reinforce the point that the performance ranking of different models depends on which games we

examine. The mapping from games to behaviors or best-fit models, however, should remain fixed

independently of how the experimenter samples across the space of games. Thus, better under-

standing of that mapping could be useful. These 19 games the crowd data identifies point the way

to further improvements over the level-1(α) and PDNE models; we leave further exploration of such

games to future work.

8 Conclusion

This paper uses approaches from machine learning algorithms not only to improve predictions of

initial play, but also to improve our understanding of it. We use these tools to develop simple and

portable improvements on existing models.

50 The hybrid matches the performance of the best hybrid; both have an accuracy of 0.79.
51 Here we set α = 0.41, which is the median estimate from the set of all games across the different training sets.
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One way we improve existing models is by studying games where machine learning algorithms

predict well, but existing models do not. In Section 3, we showed how this exercise helped us

realize that adding a risk aversion parameter to the level-1 model generates better out-of-sample

predictions of the most likely action. We developed even better predictions by generating data on

new games where level-1(α) performs poorly, identifying a simple alternative (PDNE) that does

better on this new domain, and then using a hybrid model that learns which of the two sub-

models should be applied to a given game. Finally we investigated the usefulness of crowd-sourced

prediction data for making predictions both on its own and in hybrid models, and as a way to

identify new regularities and game features that might prove useful in future work.

Along with papers such as Leyton-Brown and Wright (2014), these results show how a combi-

nation of machine learning and behavioral models can improve the prediction and understanding

of play in games. These methods are not special to the problem of predicting initial play in matrix

games, so we expect that the proposed approaches can be used to improve prediction in other

domains, both in game theory (e.g. the effect of learning and feedback on play in static games, or

initial play in extensive-form games) and in other areas of economics such as decision theory, as

well as in social science more generally.

We offer a few final comments on interpretations of our results as well as some potential future

directions:

1) Although we studied a relatively large and diverse set of games compared to the literature,

we restricted attention to the relatively simple setting of 3 × 3 matrix games. When the test set

of games is small or less varied in structure, simple low-parameter models such as level-1(α) have

an advantage over models with more parameters, which may overfit. In settings with more diverse

behavior, richer models may perform better, just as the hybrid models improved on the level-1(α)

model in predicting play in the algorithmically generated games.

2) Our finding that the performance ranking of our different models depends on which data set

we examine raises an important caution about generalizing from experiments that were designed

to highlight certain behaviors or to make specific points.

3) We did not use subject identifiers, so we could not predict or differentiate across the behavior

of different subjects. Another interesting direction would be to use similar methods to categorize

subjects (instead of games), assigning different groups of subjects different models of play as in

Fragiadakis, Knoepfle and Niederle (2016).

4) We used hand-crafted features to train the rule for selecting between models. It is possible to

simultaneously learn the prediction rule and the feature representation of the game, as in the deep

learning methods of Hartford, Wright and Leyton-Brown (2016), but at present these techniques

do not yield interpretable features.

5) Although many situations are intermediate between the “pure initial play” case we study

here and the long-run outcomes studied in models of learning in games (Fudenberg and Levine,

1998), the distribution of initial play in a game can have a major role in determining the evolution

of subsequent play. Thus, we expect that better modeling of initial play can improve predictions

of medium and long run behaviors. We leave this direction for subsequent work.
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Appendix

A Feature Sets

A.1 Features Describing Specific Actions

For each row player action ai, we include an indicator variable for whether that action:

• is part of a pure-strategy Nash equilibrium
• is part of an action profile that maximizes the sum of player payoffs.
• is part of a Pareto-dominant pure-strategy Nash equilibrium (its payoffs Pareto-dominate the

payoffs in every other pure-strategy Nash equilibrium)
• is part of an action profile that is Pareto-undominated
• is “max-max”: ai is played in the profile that maximizes the row player’s payoff
• is “max-min”: ai maximizes the minimum, over the column player’s actions, of the row

player’s payoff
• is level k for each k = 1, 2, 3
• is part of a “good” Nash equilibrium, meaning that the sum of player payoffs in this Nash

equilibrium is at least 3/4 of the largest possible player payoff sum
• is part of a symmetric good Nash equilibrium

Additionally, we include a score feature for each action, which is the number of the following

properties that it satisfies: part of a Nash equilibrium, level-1, level-2, level-3, level-4, level-5, level-

6, level-7, part of a Pareto-dominant Nash equilibrium, part of an action profile that maximizes

the sum of player payoffs.

A.2 Features Describing Properties of the Game

We define features for the following properties of the payoff matrix:

• number of pure strategy Nash equilibria
• number of actions that survive iterated elimination of strictly dominated pure strategies
• indicator for whether there is at least one action that is strictly dominated
• number of strictly dominated actions
• existence of an action that simultaneously maximizes both players’ payoffs
• number of different actions that yield the maximal row player payoff (for some column player

action)
• number of different actions that are part of an action profile that maximizes the sum of player

payoffs
• number of different actions that are part of a Pareto-undominated Nash equilibrium
• number of different level-1 actions
• number of actions that are simultaneously level-1, achieve the highest possible row-player

payoff (for some column player action), and achieve the highest possible sum of player payoffs
(for some column player action)
• number of actions that are level-k for some k ∈ {1, 2, . . . , 7}
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• indicator for whether there is some row player payoff that is 100
• number of actions that yield a row player payoff of 100
• indicator for whether some level-1 action is also level 2
• indicator for whether some level-1 action also yields the largest possible row player payoff

(max-max )
• indicator for whether some level-1 action maximizes the sum of player payoffs (max-sum)
• indicator for whether some level-1 action is max-max and also max-sum
• largest number n where some row player action satisfies n of the following properties: level-1,

max-max, max-sum
• indicator for whether some level-1 action is part of a Pareto-dominant pure-strategy Nash

equilibrium
• indicator for whether some level-1 action is also part of a pure-strategy Nash equilibrium
• indicator for whether there is a symmetric pure-strategy Nash equilibrium
• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of

player payoffs52

• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of
player payoffs, and includes the level-1 row player action
• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of

player payoffs, and does not include the level-1 row player action
• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of

player payoffs, and does not include any level-k row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible

sum of player payoffs
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible

sum of player payoffs, and includes the level-1 row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible

sum of player payoffs, and does not include the level-1 row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible

sum of player payoffs, and does not include any level-k row player action
• indicator for whether the best sum of player payoffs in the matrix exceeds—by at least 20%

of the max row player payoff in the matrix—the best payoff sum when the row player chooses
a level-k action.
• indicator for whether the best sum of player payoffs in the matrix exceeds—by at least 40%

of the max row player payoff in the matrix—the best payoff sum when the row player chooses
a level-k action.
• indicator for whether the best sum of player payoffs in the matrix exceeds—by at least 60%

of the max row player payoff in the matrix—the best payoff sum when the row player chooses
a level-k action.
• indicator for whether the row sum gap, defined as the difference between the sum of possible

row player payoffs when the row player chooses his level-1 action (and the column player’s
action is allowed to vary), and the next highest row sum, is at least 30% of the max row
player payoff in the matrix

52 We note that in this feature and the others below using %’s, the % was chosen somewhat arbitrarily; future
work may consider estimation of the optimal choice of what % to use.
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B Other Prediction Algorithms

Here we consider more sophisticated algorithms for predicting the modal action in the set of all

games. We consider a random forest algorithm—which grows decision trees using bootstrapped

samples of the data, predicting based on a majority vote across the ensemble of trees—and a 2-layer

neural net, which feeds features (inputs) through a layer of nonlinear transformations, producing

outputs that can be fed into the next layer.

Lab Games Only All Games

Accuracy Completeness Accuracy Completeness

Guessing at Random 0.33 0% 0.33 0%
Decision Tree 0.77 66% 0.70 55%

(0.04) (0.03)
Random Forest 0.74 61% 0.72 61%

(0.03) (0.02)
2-layer Neural Net 0.76 64% 0.77 69%

(0.02) (0.01)
Ideal prediction 1 100% 1 100%

The alternative algorithms underperform the single decision tree for predicting modal play in the

lab games. They improve upon the single decision tree on our set of all games, but do not improve

upon the performance of the hybrid model built on level-1(α) and PDNE, or the hybrid model built

on crowd forecasts and PDNE. The outputs of these alternative algorithms are substantially less

interpretable than the single decision tree, so we do not focus on them in this paper.

C Robustness Check: Predicting Each Instance of Play

As a robustness check, we repeat our main analysis on the full set of games for a related prediction

task. Instead of predicting the modal action, we predict a given instance of play. For this problem,

a prediction rule is still a map f : G → A1 from games to row player actions, but now each

observation is a pair (gi, ai) where gi is the game played in instance i and ai is the action chosen in

that instance of play. Thus we have many repetitions of each game corresponding to the different

subjects we observe playing those games. Given a set of instances of play {(gi, ai)}, we again

evaluate accuracy using the correct classification rate.

The naive rule is guessing at random, and again yields an expected accuracy of 1/3. The

ideal prediction rule assigns the observed modal action to each game (as before), but now has an

accuracy far from 1, since different subjects play different actions in the same game. Table 11

reports prediction accuracies and completeness measures on our set of all games. The ranking is

qualitatively unchanged from the main text (see Table 9).
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Accuracy Completeness

Guess at random 0.333 0%
Level-1 0.431 31%

(0.01)
Level-1(α) 0.449 37%

(0.00)
PDNE 0.552 39%

(0.02)
Decision Tree 0.563 70%

(0.01)
Crowd 0.585 74%

(0.01)
Level-1 + PDNE 0.587 81%

(0.01)
Crowd + PDNE 0.600 81%

(0.01)
Ideal prediction 0.645 100%

(< 0.01)

Table 11: Hybrid models also improve predictive accuracy in predicting each instance of play.

D Alternative Ideal Benchmarks

In the main text we evaluated completeness relative to predicting the actual observed modal action

in each game. This ideal benchmark is not attainable, and thus we under-estimate the completeness

of the models we consider. Below we present completeness measures relative to two alternative ideal

benchmarks. These completeness measures are not very different from the main text, but do suggest

that some of the performances are closer to complete than the main text suggests. For example,

the best completeness measure for predicting the modal action in the set of all games is 69% in the

main text, but 78% and 92% relative to the two benchmarks we consider in this section.

D.1 Bootstrapped Benchmark

We construct a bootstrapped prediction benchmark as follows. First, we assign the observed modal

action ai to each game gi . We test this prediction rule on bootstrap-resamples of our data. That

is, for each game gi, we sample ni times with replacement from the empirical distribution of actions

observed in that game, where ni is the number of observations we have for that game. Our test data

is then {(gi, âi)} where âi is the modal resampled action in game gi. We repeated this procedure

100 times and report the average prediction accuracy, along with the standard deviation of these

prediction accuracies.
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Lab Games Random Games Algo Games All Games

Acc Complete Acc Complete Acc Complete Acc Complete

Guess at random 0.33 0% 0.33 0% 0.33 0% 0.33 0%
PDNE 0.38 8% 0.55 37% 0.65 58% 0.56 34%
Uniform Nash 0.42 15% 0.57 40% 0.43 18% 0.49 27%

(0.03) (0.03) (0.03) (0.02)
Level-1 0.72 63% 0.87 79% 0.36 5% 0.64 53%
Level-1(α) 0.79 74% 0.91 97% 0.38 9% 0.68 59%
Decision Tree 0.77 71% 0.86 88% 0.67 62% 0.70 63%

(0.04) (0.02) (0.03) (0.03)
Bootstrap benchmark 0.95 100% 0.93 100% 0.88 100% 0.92 100%

(0.02) (0.01) (0.02) (0.01)

Table 12: Compare the lab game results to Table 2, the random game results to Table 4, and the
final two columns to Table 5.

Accuracy Completeness

Guess at random 0.33 0%
Level-1(α) 0.68 59%

(0.02)
PDNE 0.56 39%
Crowd 0.76 73%
Level-1(α) + PDNE 0.79 78%

(0.03)
Crowd + PDNE 0.78 76%

(0.01)
Level-1(α) + PDNE 0.79 78%

(0.03)
Bootstrap benchmark 0.92 100%

(0.01)

Table 13: Compare to Table 9.

D.2 Table Lookup Benchmark

Following Kleinberg, Liang and Mullainathan (2017) we consider a “table lookup” benchmark,

defined as follows: We divide the observations of play for each game gi into three folds and randomly

select two of these folds for training. Based on this data, we learn the prediction rule that assigns

the modal action to each game in the training data, and use this rule to predict the modal action in

the remaining fold. We report the average prediction accuracy across the three choices of test fold

in Table 14. Although this approach will converge to the idealized benchmark of 1 given enough

data, since we use only a limited number of observations, it is in fact possible to beat the table

lookup benchmark, and indeed our model beats the benchmark for the set of randomly-generated

games.
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Lab Games Random Games Algo Games All Games

Acc Complete Acc Complete Acc Complete Acc Complete

Guess at random 0.33 0% 0.33 0% 0.33 0% 0.33 0%
PDNE 0.38 9% 0.55 42% 0.65 76% 0.56 46%
Uniform Nash 0.42 16% 0.57 46% 0.43 24% 0.49 32%

(0.03) (0.03) (0.03) (0.02)
Level-1 0.72 68% 0.87 104% 0.36 7% 0.64 62%
Level-1(α) 0.79 81% 0.91 112% 0.38 9% 0.66 66%
Decision Tree 0.77 77% 0.86 102% 0.67 81% 0.65 64%

(0.04) (0.02) (0.03) (0.03)
Table Lookup benchmark 0.90 100% 0.85 100% 0.75 100% 0.83 100%

(0.01) (0.02) (0.03) (0.03)

Table 14: Compare the lab game results to Table 2, the random game results to Table 4, and the
final two columns to Table 5.

Accuracy Completeness

Guess at random 0.33 0%
Level-1(α) 0.68 70%

(0.01)
PDNE 0.56 46%
Crowd 0.76 86%
Level-1(α) + PDNE 0.79 92%

(0.03)
Crowd + PDNE 0.78 90%

(0.01)
Level-1(α) + PDNE 0.79 92%

(0.03)
Table Lookup benchmark 0.83 100%

(0.01)

Table 15: Compare to Table 9.
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For Online Publication

E Decision Trees

E.1 Prediction of Modal Action in Lab Games

The decision tree with lowest out-of-sample error is shown below:53,54

Is action a1 level 1?

Yes

predict a3 predict a2

Is action a2 level 1?

predict a1 predict a2

Is action a2’s score 7 
or higher?

number of obs: 21
actual counts:

(3,3,15)

number of obs: 19
actual counts:

(2,14,3)

number of obs: 40
actual freq: 

(33,2,5)

number of obs: 6
actual freq:

(0,6,0)

No

YesNo YesNo

Figure 9: Best decision tree for predicting the realized action in lab data.

This tree appends a single additional criterion to the level 1 model: it agrees with the level-1

model unless there are sufficiently many other reasons to choose a2. (The score variable, described

in Section A.1 ranges from zero to 10, and a2 is predicted if its score is at least seven.) In that

case, even if action a1 is level-1, action a2 is predicted instead.

Note that features are indexed to labelled actions, so the tree does not need to treat them

symmetrically. The favored treatment of a1 here reflects the fact that this was the most common

modal action in the lab data.

E.2 Used in Hybrid Models

E.2.1 Supplementary Material to Sections 6 and 7.3

Below we report the trees used to predict accuracy of the level-1(α) prediction (Figure 10) and

accuracy of the PDNE prediction (Figure 11) in the level-1(α) + PDNE hybrid model.

53 As we allow for additional complexity by increasing the number of decision nodes n, the best n-split decision
tree builds on the level-1 model. Large values of n quickly result in overfitting.

54 The tree in Figure 9 was produced for eight of the ten training sets.
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Is there a symmetric NE that achieves 75% of 
max possible payoffs and is not level 1?

Is there an action that maximizes 
both players’ payoffs?

No Yes

YesNo0.84

0.73 0.24
no. of obs: 308

no. of obs: 60 no. of obs: 118

Figure 10: Predicted probability that the level-1(α) prediction is correct in bold.

Is there a level 1 action that is also part of 
a Pareto-dominant NE?

No Yes

Is there a symmetric NE that 
achieves 75% of max possible 

payoffs and is not level 1?

YesNo

0.29 0.61
no. of obs: 196 no. of obs: 176

0.94
no. of obs: 114

Figure 11: Predicted probability that the PDNE prediction is correct in bold.

The first tree predicts the probability that whether the level-1(α) model will choose the modal

action. For example, if the game does not have a symmetric NE with high payoffs (75% of max

possible) that does not include the level-1 action, then the level-1(α) action is predicted to be modal

84% of the time.55 The level-1(α) model is predicted to perform worst when there is a symmetric

NE that maximizes both players’ payoffs but does not contain the level-1 action: In this case, the

level-1(α) action is predicted to be correct only 24% of the time.

The second tree predicts the probability that the PDNE prediction will be correct. The model

is predicted to perform well when the Pareto-dominant NE includes the level-1 action, and also

when there is a symmetric NE that achieves high payoffs (this is almost always a Pareto-dominant

NE in our data). We do not know whether this is true more generally or whether it is a special

55 Roughly this means that in 84% of games in the training sample with this property, the level-1(α) action was
modal.

38



feature of our set of games.

The hybrid model that combines PDNE with the crowd forecast (see Section 7.3) uses the

following tree to predict the accuracy of the crowd forecast:

Does the row sum gap exceed 35% of the 
best row payoff?

No Yes

Is there a symmetric NE that 
achieves 75% of max possible 

payoffs and is not level 1?

YesNo

0.75 0.49
no. of obs: 281 no. of obs: 79

0.99
no. of obs: 126

Figure 12: Predicted probability that the crowd forecast is correct in bold.

The tree used to predict PDNE accuracy is the same as the one in Figure 11.

E.3 Lab Games Only

We report below the analogue of Figure 6—which chooses between the level-1(α) model and

PDNE—for the data set consisting only of the lab games.
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Is there a “decoy”?

No Yes

Is the row sum gap at least 25% of the 
max row player payoff?

Yes

Level-1(↵)

#obs: 6

Actual accuracies:
level-1(↵)—0.16
PDNE—0.83

Is there a Pareto-Dominant NE?

No Yes

PDNELevel-1(↵)

#obs: 23

Actual accuracies:
level-1(↵)—0.78
PDNE—0.34

#obs: 15

Actual accuracies:
level-1(↵)—0.80
PDNE—0.80

PDNE

#obs: 42

Actual accuracies:
level-1(↵)—0.93
PDNE—0.17

No

Figure 13: Assignment of games to level-1(α) or PDNE (lab games only)—compare to Figure 6.

Above, the feature “is there a decoy” refers to the indicator for whether the best sum of player

payoffs in the matrix exceeds—by at least 60% of the max row player payoff in the matrix—the

best payoff sum when the row player chooses a level-k action.

F Experimental Instructions

The instructions provided to Mechanical Turk subjects in the experiments described in Sections 4

and 7 are reproduced below. With a few exceptions, instructions that were repeated across these

experiments are only presented once.
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F.1 Playing Games (Section 4)

F.1.1 Initial Instructions
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F.1.2 Typical Question
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F.2 Predicting the Most Likely Action (Section 7)

F.2.1 Initial Instructions:
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F.2.2 Typical Question:
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G Explanation of Choices in Experiments

Subjects were asked to explain how they made their choices in a (free-form) text box. We show

below selected answers from our experiments in which players were asked to choose an action:

• “I chose based on mutually beneficial numbers, followed by singular benificial [sic] numbers,

and finished with whatever was left over.”

• “Except the first question. I added the orange in each row(A,B,C) Then put it in order from

highest to the least. I’m hoping I did this right :o)”

• “i count each value quickly. It is easy for me. Good game”

• “I assumed Green was aquisitive [sic] and non-sharing”

• “Without knowing what sort of patterns the partner displayed it’s mostly guesswork. I

assumed orange would avoid choosing rows where zero payoff was possible, and that green

would similarly prefer not to bet on columns with a zero payoff. I assumed both would think

the same way and be trying to achieve a good payoff, not just selecting the row or column

with the highest possible payoff. Wheels within wheels.”

• “i tried to figure out if there is obvious worst of all, then eliminate it”

• “I looked at what Green would probably pick and then based on that decided what Orange

would pick when thinking about what the Green letter would likely be.”

We show below selected answers from our experiments in which players were asked to predict the

play of others:

• “I picked the lines that had the biggest looking numbers. People like big numbers.”

• “I chose mostly the midrange digits for most and varied the low and high for mid and least.”

• “I looked at the highest numbers and whether there were any zeroes in the line, because I

figured that would be a huge deterrent for someone.”

• “I chose the route of either placing the orange player in a strict profit maximizing role without

taking into account the decisions of the green player, or I chose the best scenario for both the

orange and green player.”

• “I just picked what felt right at the particular game”

• “i was aware that the best way to choose orange move was relative to the best move for green

but i don’t think people that took this study was smart enough for considering that and they

would choose first the move that had the biggest number.”

• “i just tried to be logical”
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