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Social Learning with Model Misspecification: A

Framework and a Robustness Result∗

J. Aislinn Bohren† Daniel N. Hauser‡
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We explore how model misspecification affects long-run learning in a sequential
social learning setting. Individuals learn from diverse sources, including private
signals, public signals and the actions and outcomes of others. An agent’s type
specifies her model of the world. Misspecified types have incorrect beliefs about
the signal distribution, how other agents draw inference and/or others’ preferences.
Our main result is a simple criterion to characterize long-run learning outcomes
that is straightforward to derive from the primitives of the misspecification. De-
pending on the nature of the misspecification, we show that learning may be cor-
rect, incorrect or beliefs may not converge. Multiple degenerate limit beliefs may
arise and agents may asymptotically disagree, despite observing the same sequence
of information. We also establish that the correctly specified model is robust –
agents with approximately correct models almost surely learn the true state. We
close with a demonstration of how our framework can capture three broad cat-
egories of model misspecification: strategic misspecification, such as level-k and
cognitive hierarchy, signal misspecification, such as partisan bias, and preference
misspecification from social perception biases, such as the false consensus effect
and pluralistic ignorance. For each case, we illustrate how to calculate the set
of asymptotic learning outcomes and derive comparative statics for how this set
changes with the parameters of the misspecification.
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1 Introduction

Faced with a new decision, individuals gather information from many diverse sources

before choosing an action. This can include the choices or outcomes of peers, the an-

nouncements of public institutions, such as a government or health agency, as well as

private sources, such as past experiences in similar situations. For example, when de-

ciding whether to enroll in a degree program, an individual may read pamphlets and

statistics about the opportunities the program provides, discuss the merits of the pro-

gram with faculty, observe the enrollment choices and job placement of other students,

and consider her own prior education experiences. Learning from these sources requires

a model of how to interpret such signals and how to infer from the actions and outcomes

of others.

A rich literature in psychology and economics documents that individuals can be

systematically biased when processing information and interpreting the decisions of oth-

ers. Depending on the context, individuals have been shown to overreact or underreact

to new information (over- and under-confidence), slant information towards a preferred

state (motivated reasoning, partisan bias), differentially weight information based on

their prior beliefs (confirmation bias), incorrectly aggregate correlated information (cor-

relation neglect), misunderstand strategic interaction (level-k, cognitive hierarchy), and

miscalculate the extent to which others’ preferences are similar to their own (false con-

sensus effect, pluralistic ignorance).1,2

In this paper, we develop a framework to represent these cognitive biases as forms

of model misspecification where individuals have incorrect models of the informational

environment and how others make decisions. Importantly, the framework is not specific

to a given set of biases and can be used to model broad classes of systematic deviations

from Bayesian learning with a correctly specified model. It can be used to represent non-

Bayesian learning rules, such as the counting heuristic (Ungeheuer and Weber 2017),

1Overconfidence: Moore and Healy (2008); Ortoleva and Snowberg (2015); Motivated reasoning /
partisan bias: Bartels (2002); Bénabou and Tirole (2011); Brunnermeier and Parker (2005); Jerit and
Barabas (2012); Köszegi (2006); Kunda (1990); Confirmation bias: Darley and Gross (1983); Lord, Ross,
and Lepper (1979); Plous (1991); Correlation neglect: Enke and Zimmermann (Forthcoming); Eyster
and Weizsacker (2011); Kallir and Sonsino (2009); Level-k / cognitive hierarchy: Kübler and Weizsäcker
(2004, 2005); Penczynski (2017) Social perception bias: Gilovich (1990); Grebe, Schmid, and Stiehler
(2008); Marks and Miller (1987); Miller and McFarland (1987, 1991); Ross, Greene, and House (1977).
Theories of cognitive limitations provide a foundation for such biases. For example, bounded memory
leads to behavior consistent with many documented behavioral biases, including belief polarization,
confirmation bias and stickiness (Wilson 2014), while selective awareness leads to confirmation bias and
conservatism bias (Gottlieb 2015).

2The context of the social learning setting will determine which biases are of first order relevance.
For example, pluralistic ignorance often arises in contexts where agents believe that a negative trait
affects their own behavior, while the false consensus effect arises for non-normative behaviors such as
sexual promiscuity or smoking.
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within a Bayesian framework. This representation provides substantial added structure

and tractability for analysis.

We explore how model misspecification affects learning in a sequential social learning

setting. Each agent is faced with a decision problem: she selects an action, and her

payoff depends on her action choice as well as an unknown state of the world. Prior

to making this decision, the agent learns about the state from a diverse set of sources:

she may observe the actions or outcomes of her predecessors, a private signal and/or

a sequence of public signals. An agent’s type – her model of the world – specifies her

preferences and how she interprets signals, as well as her beliefs about others’ preferences

and how they interpret signals. A model of the signal process is a subjective belief about

the signal distribution in each state, while a model of how others draw inference is a

subjective distribution over the types of other agents. Model misspecification refers

to the case where these subjective distributions differ from the true distributions. To

maintain structure, we assume that all types have a common understanding of certain

key features of the environment. In particular, they have a common interpretation

of the relative informativeness of signals, and they have the same ordinal preferences

over their undominated actions when they know the state. This framework captures

the information-processing biases cited above, and nests several previously developed

behavioral models of learning.3

We study asymptotic beliefs and behavior to determine whether individuals with

misspecified models adopt the desirable action, and whether those with different models

agree or disagree. We know from correctly specified observational learning models that

individuals asymptotically adopt the desirable action when there are arbitrarily precise

private signals (Smith and Sorensen 2000), actions perfectly reveal beliefs (Ali 2018; Lee

1993), a subset of agents do not observe others’ actions (Acemoglu, Dahleh, Lobel, and

Ozdaglar 2011), or there is an infinite sequence of public signals. We show that misspec-

ification opens the door to learning outcomes – long run beliefs about the state – that do

not occur in the correctly specified model. In particular, asymptotic learning may be in-

correct, where beliefs converge to the wrong state; agents may perpetually disagree, with

beliefs converging to different states, despite observing the same information; learning

may be cyclical, with beliefs that never converge; and multiple learning outcomes may

arise with positive probability, which leads to path-dependent learning (for example, the

same agent may have correct or incorrect learning, depending on initial signals). This

represents another distinction from correctly specified social learning models. In such

settings, when informational herds are possible, convergence to multiple limit beliefs also

3Appendix D demonstrates how our framework nests Bohren (2016); Epstein, Noor, and Sandroni
(2010); Rabin and Schrag (1999).
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occurs (Banerjee 1992; Bikhchandani, Hirshleifer, and Welch 1992; Smith and Sorensen

2000).4 However, in contrast to the misspecified setting, all but at most one of these

limit beliefs must be non-degenerate. This difference is economically important. Infor-

mational herds are fragile and easy to overturn, whereas degenerate beliefs – such as the

ones that arise with misspecified models – are not. Lastly, we show that cyclical learn-

ing and multiple learning outcomes are distinct features of misspecified social learning

settings: these learning outcomes do not arise in learning models in which agents are

misspecified solely about exogenous sources of information (i.e. public signals).

The asymptotic beliefs that arise in misspecified social learning models have im-

portant consequences for behavior. When learning is incorrect, agents make inefficient

choices, while when learning is cyclical, action choices oscillate between efficient and

inefficient choices infinitely often. For example, when agents learn about the riskiness

of a behavior, e.g. binge drinking, and have a misspecified model of others’ preferences,

they may perpetually oscillate between risky and safe behavior. When multiple learning

outcomes arise, relatively sophisticated agents with different life experiences can become

very certain that different states of the world are true. For example, an initial signal

that a medical technology is dangerous or a new restaurant is low quality, when in fact

the opposite is true, can lead to the mistaken belief becoming entrenched. In contrast,

if the initial signal had been positive, agents would have learned the correct state. Path

dependent learning can explain why different populations with similar models can come

to have very different entrenched views.

Our first main result (Theorem 1) characterizes how the set of asymptotic beliefs

that arise with positive probability depends on the form of misspecification. We show

that this set is determined by two expressions that are straightforward to derive from

the primitives of the model: (i) the expected change in the log likelihood ratio for each

type at each candidate learning outcome; and (ii) an ordering over the type space,

which we refer to as maximal accessibility. The first condition is used to determine

whether a learning outcome is locally stable, in that beliefs converge to this limit belief

with positive probability, from a neighborhood of the limit belief. We show that a

learning outcome is locally stable if and only if the expected change in the log likelihood

ratio moves toward this learning outcome from nearby beliefs.5 Maximal accessibility

determines when beliefs converge to a disagreement outcome with positive probability,

starting from a common prior. It establishes that it is possible to separate the beliefs

4Banerjee (1992) and Bikhchandani et al. (1992) first studied the sequential observational learning
framework with a binary signal space. They demonstrate that incomplete learning may arise when the
action space is coarser than the belief space.

5This condition relates to the relative entropy of a type’s model in each state. Intuitively, a type’s
beliefs move towards the state that is more likely to generate the observed pattern of actions, outcomes
and signals. As discussed below, limit beliefs are a Berk-Nash equilibrium (Esponda and Pouzo 2016).
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of different types and push them to a neighborhood of the disagreement outcome. An

analogous condition is not necessary for agreement outcomes, where types have the

same (possibly incorrect) limit beliefs. Beliefs converge to an agreement outcome with

positive probability, starting from a common prior, if and only if the agreement outcome

is locally stable. These conditions are straightforward to verify from the primitives of the

misspecification, and characterize which types of misspecification lead to which patterns

of long-run behavior.

To establish Theorem 1, we use results from Markov dynamic systems to characterize

the set of limit beliefs for each type. A challenge in social learning settings is that

the informational content of actions and outcomes depends on the current belief for

each type. Therefore, in principle, the asymptotic properties of beliefs could depend

on the behavior of beliefs across the infinite belief space.An important feature of our

characterization is that the conditions we outline only need to be verified at a finite set

of beliefs: that is, the set of beliefs in which all types have degenerate beliefs on one of

the states. This significantly simplifies the characterization of asymptotic learning.

Our characterization also establishes a robustness property (Theorems 3 and 4): re-

gardless of the form of misspecification, agents almost surely learn the correct state when

they have approximately correct models.6 This shows that agents do not have to know

exactly how their peers behave in order to learn from their choices. Complete learning

obtains even in the presence of model heterogeneity, as long as none of these models are

too misspecified. This may not seem surprising, since Bayes rule is continuous. But in

an infinite horizon setting, a small mistake in each period could sum to a large aggregate

mistake. If biases aggregate in this manner, then even arbitrarily small misspecification

could interfere with learning, which would in principle limit the applicability of rational

learning models. Our results establish when this does not occur.

We close with a demonstration of how our framework can capture three forms of

model misspecification prominent in the empirical literature: strategic misspecification,

signal misspecification and preference misspecification. For the first category, we demon-

strate how our framework can be used to capture learning with level-k and cognitive

hierarchy models of reasoning. Agents correctly interpret signals and payoffs, but have

a misspecified model of how others draw inference. In the level-k parameterization, a

level-k agent believes that other agents are level-(k-1). We show that, depending on the

true distribution over types, either learning is cyclical or agents with different levels of

6The robustness result in Bohren (2016) is a special case of this result. In contrast, Madarász
and Prat (2016) find a lack of robustness in a mechanism design setting where a principal’s model of
an agent’s preferences is misspecified. Using the optimal mechanism with respect to a misspecified
model can lead to non-vanishing losses, even when the level of misspecification is small. This contrasts
with our robustness results, in which the losses from misspecification vanish as the misspecified model
approaches the correctly specified model.
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reasoning come to be arbitrarily certain of different states – they asymptotically dis-

agree. In the cognitive hierarchy parameterization, a level-k agent believes that other

agents are level-1 through level-(k-1). In this case, enough information arrives to ensure

belief convergence, but depending on the severity of the misspecification, each type may

learn the correct or incorrect state. A surprising finding in both cases is that a higher

level of reasoning may perform strictly worse than a lower level of reasoning.

For the second category of misspecification, we apply our framework to a setting

where agents slant their beliefs towards a preferred state, exhibiting partisan bias. Non-

partisan types correctly interpret signals, but do not account for the slant of the partisan

types. We characterize how the severity of the partisan bias and the frequency of agents

who exhibit partisan bias affects asymptotic learning for partisan and non-partisan types.

We show that the partisan type’s bias, coupled with the nonpartisan type’s failure to

account for it, can impede the convergence of beliefs or lead to incorrect learning for

both types.

Finally, we explore preference misspecification by studying social perception biases.

When agents overestimate the similarity between their own preferences and the prefer-

ences of others – exhibiting the false consensus effect – they may learn the incorrect

state, while when agents systematically underestimate this similarity – exhibiting plu-

ralistic ignorance – beliefs may not converge. For example, suppose agents are learning

about the return to choosing a risky action. If a risk-averse agent overestimates the

share of other agents who are also risk-averse (false consensus), she will underestimate

the share who choose the risky action. As a consequence, she will observe a higher than

expected failure rate. This reinforces her choice of the safe action. In contrast, if a

risk-averse agent underestimates the share of other agents who are also risk-averse (plu-

ralistic ignorance) – for example, a college student overestimates the share of students

who enjoy heavy drinking despite the risk of failing their classes – then the outcomes

of agents who are actually engaged in safe behavior will be misperceived as evidence

that the risky choices are actually safe. Here, pluralistic ignorance will prevent agents

from learning the negative consequences of high risk behaviors. In both cases, effective

interventions to change behavior will require information about the choices of others,

rather than information about the outcomes of these choices.

Related Literature. A rich literature explores when model misspecification interferes

with learning in both individual and social learning settings. The results are mixed: in

some cases, misspecification impedes learning about the state or leads to inefficient

behavior, while in other cases, misspecified agents still learn the correct state asymptot-

ically. For example, overweighting information (Epstein et al. 2010; Rabin and Schrag

1999), failing to account for redundant information (Bohren 2016; Eyster and Rabin
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2010) and selective attention (Schwartzstein 2014) can lead to incorrect learning, while

misspecified prior beliefs (Fudenberg, Romanyuk, and Strack 2017; Nyarko 1991), over-

estimating redundant information (Bohren 2016) and underestimating the similarity of

others’ preferences (Gagnon-Bartsch 2017) can lead to non-convergence. Correlation

neglect can lead to inefficient risk-taking (Levy and Razin 2015), while overconfidence

can lead to inefficiently low effort (Heidhues, Koszegi, and Strack 2018) and ideological

extremeness (Ortoleva and Snowberg 2015). In contrast, underweighting information

(Epstein et al. 2010), using coarse reasoning (Guarino and Jehiel 2013) or using a lin-

ear updating heuristic that puts sufficient weight on agents’ own signals (Jadbabaie,

Molavi, Sandroni, and Tahbaz-Salehi 2012) leads to correct learning almost surely. By

providing a general characterization of when misspecification interferes with learning and

when it does not, our framework unifies insights from different forms of misspecification.

Molavi, AlirezaTahbaz-Salehi, and Jadbabaie (2018) engage in a similar exercise when

agents share their beliefs on a network and have imperfect recall. They nest common

learning rules that agents use to aggregate beliefs (as opposed to actions and outcomes),

including the canonical Degroot model, and show how this impacts long-run information

aggregation.

Esponda and Pouzo (2016, 2017) explore the implications of model misspecification

for solution concepts. In a Berk-Nash equilibrium, agents have a set of (possibly mis-

specified) models of the world. They play optimally with respect to the model that

is the best fit, i.e. the model that minimizes relative entropy with respect to the true

distribution of outcomes under the equilibrium strategy profile. Our paper corresponds

to the case in which each agent has a single misspecified model in each state.7 The belief

about the state for each type can converge to any limit belief, such that at that limit

belief, each type’s model in the corresponding state is the best fit, given the observed

frequency of actions and signals when each type is choosing the optimal action with

respect to this limit belief. This is equivalent to a Berk-Nash equilibrium in a dynamic

game with infinitely many players.

A related class of papers explore the foundations of non-Bayesian updating and model

misspecification. Ortoleva (2012) axiomatizes a non-Bayesian updating rule in which

agents switch models when they observe a sufficiently low probability event. Cripps

(2018) axiomatizes a class of non-Bayesian updating processes that are independent of

how individuals partition information. Frick, Iijima, and Ishii (2018) show that the false

consensus effect can arise when agents’ beliefs are derived only from local interactions

in an assortative society.

7In our framework, an agent’s type and a state corresponds to a model of the world in the Esponda
and Pouzo (2016) framework.

6



An older statistics literature on model misspecification complements recent work.

Berk (1966) and Kleijn and van der Vaart (2006) show that when an agent with a

misspecified model is learning from i.i.d. draws of a signal, her beliefs will converge to

the distribution that minimizes relative entropy with respect to the true model. Shalizi

(2009) extends these result to a class of non-i.i.d. signal processes. Our environment

does not fall into this class of processes. In particular, the asymptotic-equipartition

property, which describes the long-run behavior of the sample entropy, is generally not

satisfied in social learning environments with model misspecification.

The paper proceeds as follows. Section 2 sets up the model. Section 3 outlines

the agent’s decision problem and defines a recursive representation of beliefs. Section

4 presents the asymptotic learning characterization and robustness results. Section 5

develops three applications to explore specific forms of misspecification, while Section 6

concludes. All proofs are in the Appendix.

2 The Common Framework

2.1 The Model

States and Actions. There are two payoff-relevant states of the world, ω ∈ {L, R},
with common prior belief Pr(ω = L) = p0. Nature selects one of these states at the

beginning of the game. A countably infinite set of agents t = 1, 2, ... act sequentially

and make a single decision at ∈ A, where A is a finite set with M ≡ |A| ≥ 2 actions.

Signals and Histories. Agents learn from private information, public information

and the actions of other agents.8 Before choosing an action, each agent t observes

the ordered history of past actions (a1, ..., at−1), the ordered history of public signals

(y1, ..., yt), where y ∈ Y and Y is a finite signal space, and a private signal zt ∈ Z, where

Z is an arbitrary signal space. Let ht = (a1, ..., at−1, y1, ..., yt−1) denote the action and

public signal history.

Suppose signals 〈zt〉 and 〈yt〉 are i.i.d. across time, conditional on the state, jointly

independent, and drawn according to probability measures µωz ∈ ∆(Z) and µωy ∈ ∆(Y)

in state ω. Assume that no private or public signal perfectly reveals the state, which

implies that both µLz , µ
R
z and µLy , µ

R
y are mutually absolutely continuous with common

supports, which we assume to be Z and Y . Finally, assume that some signals are

informative, which rules out the trivial case where both dµLz /dµ
R
z = 1 almost surely and

dµLy /dµ
R
y = 1 almost surely.

Given private signal z, the private belief that the state is L is s(z) = 1/(1 +

8In the introduction, we reference the possibility that agents also learn from the stochastic outcomes
of other agents. To maintain clarity, we present the case in which agents learn solely from actions here,
and present the extension in which agents also learn from outcomes in Appendix B. The analysis and
characterization is almost identical.

7



dµRz /dµ
L
z (z)). Let c.d.f. F ω(s) ≡ µωz (z|s(z) ≤ s) denote the distribution of s, and

S ⊆ [0, 1] denote the convex hull of the common support of s. Private beliefs are

bounded if inf S > 0 and supS < 1, and unbounded if S = [0, 1]. Similarly, given

public signal y, the belief that that state is L is σ(y) = 1/(1 + dµRy /dµ
L
y (y)). Let c.d.f.

Gω(σ) ≡ µωy (y|σ(y) ≤ σ) denote the distribution of σ, and Σ ⊂ [0, 1] denote the common

support of σ. Let σL ≡ maxy∈Y σ(y) denote the maximal public signal in state L, i.e.

the posterior belief corresponding to the public signal that is the strongest evidence for

state L, and analogously, let σR ≡ miny∈Y σ(y) denote the maximal public signal in state

R. By the finiteness of the public signal space, these signals exist.

Timing. At time t, agent t observes the history ht and the private signal st, then

chooses action at. Then public signal yt is realized and the history ht+1 is updated to

include (at, yt).
9

Types Framework. Agent t has privately observed type θt ∈ Θ drawn from distri-

bution π ∈ ∆(Θ), where Θ ≡ (θ1, ..., θn) is a non-empty finite set. An agent’s type

specifies her model of inference and preferences. A model of inference determines how

a type interprets information from signals and prior actions and forms its belief about

the state. Preferences determine which action this type chooses, given its belief about

the state.

Models of Inference. For each type θi, a model of inference includes (i) a subjective

private signal distribution µ̂ωz,i in each state ω ∈ {L,H}, (ii) a subjective public signal

distribution µ̂ωy,i in each state ω ∈ {L,H}, and (iii) a subjective distribution of types π̂i ∈
∆(Θ). Assume that each type θi believes that no private or public signal perfectly reveals

the state, and does not observe a signal that is inconsistent with its model of inference,

which implies that (µ̂Lz,i, µ̂
R
z,i) and (µ̂Ly,i, µ̂

R
y,i) are mutually absolutely continuous and

have full support on Z and Y , respectively. Given private signal z, type θi’s subjective

private belief that the state is L is ŝi(z) = 1/(1 + dµ̂Rz,i/dµ̂
L
z,i(z)). Similarly, we can

write type θi’s subjective belief that the state is L, given public signal y, as σ̂i(y) =

1/(1 + dµ̂Ry,i/dµ̂
L
y,i(y)).

We focus on forms of misspecification in which agents have a common understanding

of some aspects of the private and public signals. Define two pairs of signal measures

as aligned if they have the same ordinal ranking over the informativeness of signals. In

other words, for any two signals z and z′, if z is stronger evidence for state L than z′

under one measure, then z is also stronger evidence for state L than z′ under the other

measure.

9Allowing agent t to observe yt before choosing an action does not affect the analysis, but complicates
the notation.
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Definition 1 (Aligned Signals). Given signal space Z, the mutually absolutely contin-

uous probability measures µL, µR ∈ ∆(Z)2 and νL, νR ∈ ∆(Z)2 are aligned if for any

z, z′ ∈ suppµ ∩ supp ν such that dµL

dµR
(z) ≥ dµL

dµR
(z′), then dνL

dνR
(z) ≥ dνL

dνR
(z′), with equality

iff dµL

dµR
(z) = dµL

dµR
(z′).

We assume that each type’s subjective private and public signal distributions are aligned

with the true private and public signal distributions. We allow one exception for the

possibility that a type believes signals are completely uninformative.

Assumption 1 (Aligned Subjective Signals). For all θi ∈ Θ, either the subjective private

signal distributions µ̂Lz,i, µ̂
R
z,i are aligned with the true distributions µLz , µ

R
z or the subjective

private signal distributions are uninformative µ̂Lz,i = µ̂Rz,i, and similarly for the subjective

public signal distributions µ̂Ly,i, µ̂
R
y,i.

Under Assumption 1, all types ordinally rank signals in the same way, in terms of which

signals are more or less indicative of state L. Types may differ in the degree to which a

signal influences their belief about the state – both relative to other types and relative to

the true distribution. When public signals are aligned, the maximal public signals σL and

σR are also maximal with respect to each agent’s subjective public signal distribution.

Preferences. Type θi earns payoff ui(a, ω) from choosing action a in state ω, where

ui : A × {L,R} → R. Given a belief p ∈ [0, 1] that the state is L, the expected payoff

from choosing action a is pui(a, L) + (1− p)ui(a,R). An agent chooses the action that

maximizes her expected payoff. For each type, assume that at least two actions are not

weakly dominated, no two actions yield the same payoff in both states, and no action is

optimal at a single belief. Without loss of generality, assume that no action is dominated

for all types.

We focus on settings in which agents generate information in a common way, in terms

of their action choices. This restricts how preferences vary across types. Define a set of

utility functions as aligned if, under complete information, each utility function has the

same ordinal ranking over undominated actions.

Definition 2. Utility functions u1, ..., un are aligned if there exists a complete order �
on A such that if a � a′, then for all i = 1, ..., n, either ui(a, L) > ui(a

′, L) or a is

dominated.10

The definition places no restrictions on how to order actions that are optimal for a single

type or how a type ranks its dominated actions. Smith and Sorensen (2000) establish

10For any undominated actions a and a′, if ui(a, L) > ui(a
′, L), then ui(a,R) < ui(a

′, R). Therefore,
this definition implies that utility functions also have the same ordinal ranking over undominated actions
when the state is R, i.e. if a � a′, then for all i = 1, ..., n, either ui(a,R) < ui(a

′, R) or a′ is dominated.
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that confounded learning can arise when types have preferences that are not aligned,

such as u1 = 1a=ω and u2 = 1a6=ω. The same is true with misspecification. Therefore, we

restrict attention to settings in which confounded learning does not arise in the correctly

specified model by assuming that preferences are aligned.

Assumption 2 (Aligned Preferences). The set of types Θ have aligned preferences.

Assumption 2 implies common knowledge that preferences are aligned, since all agents

believe that other agents have a type in Θ, and so on.

Given Assumption 2, we maintain a complete order over the action space A by

relative preference in state L. Fixing an order � that satisfies Definition 2, index actions

to correspond to this order, i.e. A ≡ (a1, ..., aM), where am � al iff m > l.11 Under this

order, aM denotes the maximal action in state L, and a1 denotes the maximal action in

state R.

Categories of Types. We can broadly group types into four categories based on their

models of inference: noise, autarkic, sociable and correct. A noise type does not use

its private signal or the history to learn about the state. We can model this using the

types framework by defining a noise type to believe that private and public signals are

uninformative, µ̂Lz,i = µ̂Rz,i and µ̂Ly,i = µ̂Ry,i. Noise types also believe that actions reflect

no information about the state, which is modeled as the belief that all agents are noise

types, π̂i(ΘN) = 1, where ΘN denotes the set of noise types. An autarkic type learns from

its private signal, but not the history. It believes that its private signal is informative,

µ̂Lz,i 6= µ̂Rz,i, the public signal is uninformative, µ̂Ly,i = µ̂Ry,i, and all agents are noise types,

π̂i(ΘN) = 1. To avoid the trivial case in which an autarkic type is observationally

equivalent to a noise type, we assume that an autarkic type has preferences such that

it has at least two undominated actions on the set of posterior beliefs that arise from

its subjective private signal distribution. A type is sociable if it uses the history to

learn about the state. These types believe that either actions or the public signal are

informative. Finally, a correct type has a correct model of inference, µ̂ωz,i = µωz , µ̂ωy,i = µωy
and π̂i = π.

Let Θ be ordered such that the first k types are sociable and the remaining n − k
types are noise and autarkic types. Let ΘS = (θ1, ..., θk) denote the set of sociable types,

ΘA denote the set of autarkic types and ΘN denote the set of noise types.

11This order is not necessarily unique. Definition 2 places no restriction on how actions that are
optimal for a single type are ordered. For example, if one type chooses action L1 when p ≥ 1/2, and
otherwise chooses R1, and a second type chooses action L2 when p ≥ 1/2, and otherwise chooses R2,
then both the orders L1 � L2 � R1 � R2 and L2 � L1 � R1 � R2 satisfy Definition 2. This is not a
problem, as any order that satisfies Definition 2 can be used.
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Adequate Consistent Information. We focus on settings in which adequate infor-

mation arrives for agents to learn the state in a correctly specified model, and study

whether and how misspecification interferes with such learning. We know from Smith

and Sorensen (2000) that incomplete learning arises in correctly specified models when

there are no public signals or autarkic types and private signals are uniformly bounded

in strength. The same is true for misspecified models: if actions and public signals cease

to reveal information, and all types are aware of this, then learning will be incomplete.

Assumption 3 rules out such settings by assuming that either public signals are infor-

mative or autarkic types occur with positive probability. Since autarkic types do not

observe the history, their actions are always informative.

Assumption 3 (Adequate Information). Either (i) public signals are informative,

dµLy /dµ
R
y 6= 1, and all sociable types θi ∈ ΘS believe that public signals are informa-

tive, dµ̂Ly,i/dµ̂
R
y,i 6= 1, or (ii) there exists an autarkic type θj ∈ ΘA with π(θj) > 0 that

plays actions a1 and aM with positive probability, and each sociable type θi ∈ ΘS believes

this autarkic type exists, π̂i(θj) > 0.

This assumption ensures that actions or public signals are informative, and sociable

types believe that actions or public signals are informative.

We also focus on settings in which the observed history is consistent with each type’s

model of inference, in that types do not observe what they believe to be zero-probability

histories. In the case of a single type, the type trivially has a correct model of the

type distribution, and consistency is not an issue.12 With multiple types, a type may

have a model of inference that places probability zero on an action that occurs with

positive probability. To rule out this possibility, we assume that sociable types believe

that there is an autarkic or noise type that plays each action with positive probability

(this probability can be arbitrarily small).

Assumption 4 (Consistent Information). When there are multiple types, |Θ| ≥ 2, then

for each a ∈ A and for each sociable type θi ∈ ΘS, there exists an autarkic or noise type

θj ∈ ΘA ∪ΘN with π̂i(θj) > 0 that plays a with positive probability.

This ensures that each sociable type believes that all histories are on the equilibrium

path, and we do not need to model how a type reacts to zero probability events.

Any misspecified model can be slightly perturbed so that it satisfies Assumptions 3

and 4 by either (i) perturbing an uninformative public signal distribution so that it is

12When |Θ| = 1, it must be that this type has a correct belief about the distribution of types,
π̂1(θ1) = π(θ1) = 1, and all observed actions will be consistent. Note that even if only one type actually
exists, π(θ1) = 1, if this type believes that there is another type θ2, i.e. π̂1(θ2) > 0, then Θ = (θ1, θ2)
and we are in the case with more than one type.
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slightly informative, or (ii) perturbing the type distribution to add an autarkic or noise

type that occurs with arbitrarily small probability.

2.2 Examples

This types framework can capture many information-processing biases and models of

reasoning about others’ action choices that have been studied empirically, as illustrated

in the following examples.

Partisan Bias. Individuals have an information-processing bias that systematically

slants signals towards one state. A parameterization that slants private signals towards

state L is ŝ(z) = s(z)ν , where ν < 1 (Bartels 2002; Jerit and Barabas 2012).

Under/Overconfidence. Agents underweight or overweight signals. For example,
ŝ(z)

1−ŝ(z) = ( s(z)
1−s(z))

ν , where ν ∈ [0, 1) corresponds to underweighting and ν ∈ (1,∞)

corresponds to overweighting (Angrisani, Guarino, Jehiel, and Kitagawa 2018; Moore

and Healy 2008).

Correlation Neglect. Agents underestimate the correlation in the actions of prior

agents: the true share of autarkic types is π(ΘA), but sociable types believe that the

share of autarkic types is π̂(ΘA) > π(ΘA) (Enke and Zimmermann Forthcoming).

Level-k/Cognitive Hierarchy. All types have a misspecified distribution of types.

Level-1 believes all other agents are noise types, and behaves as an autarkic type. Level-

2 believes all other agents are level-1, and interprets all prior actions as independent

private signals. Level-3 believes all other agents are level-2, and so on. The cognitive

hierarchy model is similar, but allows agents to have a richer belief structure over the

types of other agents: a level-k type places positive probability on levels 0 through k-1

(Penczynski 2017).

False Consensus Effect: Payoffs. Agents overweight the likelihood that others have

similar preferences. For example, there are two types with preferences u1 6= u2. Both

types believe that others have the same preferences as their own, π̂1(θ1) = 1 and π̂2(θ2) =

1 (Marks and Miller 1987; Ross et al. 1977).

False Consensus Effect: Signals. Agents overweight the likelihood that others have

similar models of inference. For example, there are two types. Type θ1 has a correct

model of the signal process, r1(s) = s, and believes that other agents do as well, π̂1(θ1) =

1. Type θ2 has partisan bias, r2(s) = s0.5, and believes other agents interpret information

in the same way, π̂2(θ2) = 1 (Gilovich 1990).

Pluralistic Ignorance. Agents underweight the likelihood that others have similar

preferences or models of inference. For example, all agents have preferences u1, but

believe that others have preferences u2. Alternatively, all agents correctly interpret

private signals, but believe that others are overconfident (Miller and McFarland 1987,

1991).
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Limited Recall. A single long-run agent has limited memory: she can recall past

actions, but not past signals. The agent may also be misspecified in how she recalls

these actions.

2.3 Discussion of Model

We briefly comment on several notable features of the model.

Types as Models. An agent’s type captures her model of the world, which she uses

to learn about the environment. Our types framework implicitly restricts this learning

to features of the environment that are directly payoff-relevant, i.e. the state. We can

divide type θi’s model into a model of the world in state L, which consists of the type

distribution and the signal distributions in state L, (µ̂Lz,i, µ̂
L
y,i, π̂i), and analogously, a

model of the world in state R, (µ̂Rz,i, µ̂
R
y,i, π̂i).

13 We take this model in each state as fixed,

and explore long-run learning about the state.

Hierarchies of Beliefs and Aligned Type Spaces. When agents have heterogenous

models, agents may be misspecified about how other agents learn.14 This can lead to

complicated higher-order beliefs. For example, when an agent believes that other agents

have partisan bias, we also need to model what this agent believes that these partisan

bias agents believe about others. In our framework, these higher-order beliefs are fully

captured by the subjective type distributions. If type θi believes that all agents are

type θj, then type θj’s subjective distribution π̂j captures θi’s second order beliefs, the

subjective type distributions of the types in the support of π̂j capture third order beliefs,

and so on. Therefore, the type space of models Θ determines the set of belief hierarchies

that we consider, and hence, determines the belief type space.

We place two restrictions on Θ, which structures the forms of model misspecification

we consider. First, we focus on aligned type spaces in which all agents generate and

interpret information in a common way. Aligned signals (Assumption 1) guarantee that

agents have a common interpretation of the relative order of signals as evidence for

state L, and aligned preferences (Assumption 2) guarantee that the action choices of

agents are ordered in a way that reflects the same relative strength of evidence for state

L.15 For example, it is common knowledge that lung cancer is stronger evidence that

smoking has a negative impact on the lungs, relative to shortness of breath, but agents

may differ in their beliefs about the magnitude of these two signals. Or agents have the

13This set-up implicitly assumes that the type distribution is the same in both states. It is a
straightforward extension to allow the true and/or subjective type distributions to depend on ω.

14This is not possible with a single type, |Θ| = 1. Trivially, a single type has a correct model of the
type distribution, π̂1(θ1) = 1.

15Common knowledge of the same signal distribution is nested as a special case of our setting, in
which all types have the same model of inference. This does not preclude misspecification: the model
of the signal distribution may be incorrect.
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same preferences between a risky and a safe asset when they are certain about the state,

but differ in their risk preferences, and therefore, the threshold belief about the state at

which they are willing to start investing in the risky asset.

Second, we assume that Θ is finite. This limits the number of models that each type

can attribute to other agents. It also rules out infinite chains of models of the form:

type θi believes all agents are type θi+1, type θi+1 believes all agents are θi+2, etc. for

i = 1, 2, ....

Individual Learning Model. Our framework nests an individual learning model in

which a long-run agent learns from a sequence of exogenous signals. To model such

settings, suppose that the public signal is informative, the private signal is uninformative,

and there is a single type with an uninformative subjective private signal distribution.

Then actions contain no private information. This is isomorphic to a model in which a

single long-run agent observes a sequence of signals.16

Extensions. We assume that agents have a common prior about the state and that

private signals are drawn from the same distribution for all types. It is straightforward

to extend the types framework to allow for heterogenous prior beliefs about the state,

i.e. type θi has a prior belief pi,0, and to allow private signals to be drawn from different

distributions, i.e. type θi has signals drawn from µωz,i. Now, an agent’s belief about a

type captures both what this agent believes is the type’s signal distribution, as well as

what this agent believes that the type believes is its signal distribution. The analysis

carries through unchanged using this augmented definition of a type (albeit with more

burdensome notation).

We assume that the action and public signal spaces are finite, and the state space

is binary for technical convenience. Allowing for a continuous action and public signal

space, or a finite state space would not qualitatively change the analysis. Generalizing

to an infinite dimensional state space would introduce significant technical overhead.

3 Action Choices and Beliefs

A Signal Representation. It is convenient to work with the private beliefs s(z) and

ŝ(z), rather than the underlying private signal z, as the private belief space is ordered.

We show that when signals are aligned (Assumption 1), we can define a mapping between

the true private belief and the misspecified private belief for each type that is sufficient

for the underlying signal. This allows us to work in the private belief space, and also

provides an interpretation for the misspecification.

When signals are aligned, if z and z′ lead to the same true belief, s(z) = s(z′), then

16It is also isomorphic to a model in which multiple long-run agents observe the same sequence of
public signals.
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they also lead to the same subjective belief for each type θi, ŝi(z) = ŝi(z
′). Similarly,

if z leads to a higher true belief than z′, s(z) > s(z′), then it also leads to a higher

subjective belief for each type θi that believes private signals are informative, ŝi(z) >

ŝi(z
′). Therefore, it is possible to represent type θi’s subjective belief following signal z

as a function of the true private belief, ŝi(z) = ri(s(z)), where ri : S → [0, 1]. For each

type that believes signals are informative, ri is a strictly increasing function. Similarly,

we can represent type θi’s belief following public signal y as σ̂i(y) = ρi(σ(y)), where

ρi : Σ → [0, 1] has the same properties as ri. Lemma 15 in Appendix C derives this

result.17

Given these representations, we can work directly with the processes 〈st〉 and 〈σt〉 as

signals, where st ≡ s(zt) is referred to as the private signal and σt ≡ σ(yt) is referred to

as the public signal. The functions ri(s) and ρi(σ) determine type θi’s posterior beliefs

following signals s and σ. Let F̂ ω
i (s) ≡ µ̂ωz,i(z|s(z) ≤ s) denote type θi’s subjective

distribution of s, and Ĝω
i (σ) ≡ µ̂ωy,i(y|σ(y) ≤ σ) denote type θi’s subjective distribution

of σ. The tuple {F̂L
i , F̂

R
i , Ĝ

L
i , Ĝ

R
i } is sufficient for representing type θi’s subjective signal

distribution, and we do not need to keep track of the underlying measures on Y or Z.

The Individual Decision-Problem Consider an agent of type θi who observes his-

tory h and private signal s. The agent uses her model of inference to compute the

probability of h in each state, Pi(h|ω), and applies Bayes rule to form the likelihood

ratio

λi(h) ≡ Pi(L|h)

Pi(R|h)
=

(
p0

1− p0

)
Pi(h|L)

Pi(h|R)
(1)

that the state is L versus R. For autarkic or noise types, λi(h) = p0/(1 − p0) for all h,

since these types believe that the history is uninformative. Let λ(h) ≡ (λ1(h), ..., λk(h))

denote the vector of likelihood ratios for sociable types (θ1, ..., θk).

To construct λi(h) for sociable types, we first consider each type’s decision rule.

Given a belief λi(h), the agent observes signal s, uses her model of inference to compute

the likelihood of s in state L versus R, and applies Bayes rule again to form the private

posterior likelihood ratio

pi(λi(h), s)

1− pi(λi(h), s)
≡ Pi(L|h, s)
Pi(R|h, s)

= λi(h)

(
ri(s)

1− ri(s)

)
(2)

that the state is L versus R.

17Alternatively, we can define a form of misspecification relative to the relationship between ŝ and
s, and provide a foundation for this misspecification on an underlying signal space. In Appendix C, we
also show that for any strictly increasing function r : S → [0, 1] with r(inf S) < 1/2 and r(supS) > 1/2,
there exists a pair of mutually absolutely continuous probability measures with full support on ∆(Z)
that are represented by r. The same holds for the public signal.
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Given pi(λi, s), type θi chooses the action that maximizes its expected payoff. Since

no two actions yield the same payoff in both states, no action is optimal at a single

belief, preferences are aligned and actions (a1, ...aM) are ordered by relative preference

in state L, there exist private belief thresholds 0 = pi,0 ≤ pi,1 ≤ ... ≤ pi,M = 1 such

that we can partition the belief space into a finite set of closed intervals, with action am

optimal at beliefs p ∈ [pi,m−1, pi,m] iff pi,m−1 6= pi,m, and am dominated iff pi,m−1 = pi,m.

Without loss of generality, assume the tie-breaking rule is to choose the undominated

action with the lower index at each interior cut-off pi,m ∈ (0, 1), i.e. if pi,m−1 6= pi,m,

choose am at belief pi,m. Since there are at least two undominated actions, there are

at least two intervals with a non-empty interior, pi,m−1 6= pi,m. The right hand side of

(2) is strictly increasing in s at any interior belief λi ∈ (0,∞). In turn, the posterior

belief pi(λi, s) is also strictly increasing in s. Therefore, there exist signal cut-offs 0 =

si,0(λi) ≤ si,1(λi) ≤ ... ≤ si,M(λi) = 1 such that type θi chooses action am at belief λi

iff the realized private signal s ∈ (si,m−1(λi), si,m(λi)] and si,m−1(λi) 6= si,m(λi). For any

belief λi, this decision rule maps the private signal s into an action choice.

The Likelihood Ratio From the decision rules characterized above, we can determine

how each sociable type interprets the history to compute Pi(h|ω) and λi(h). Misspecifi-

cation introduces a wedge between the subjective and true probability of observing each

action. An agent’s model of inference determines how she interprets each action, while

the true signal and type distributions determine the true probability. Suppose an agent

of type θi has likelihood ratio λi. The probability that she chooses action am is equal

to the probability of observing a private signal in the interval (si,m−1(λi), si,m(λi)]. This

is determined by the true signal distribution, F ω(si,m(λi))− F ω(si,m−1(λi)). Therefore,

given λ and ω, the true probability of observing action am is

ψ(am|ω,λ) ≡
n∑
i=1

π(θi)(F
ω(si,m(λi))− F ω(si,m−1(λi))). (3)

Type θj uses its subjective signal distribution to calculate the probability that θi chooses

am, F̂ ω
j (si,m(λi)) − F̂ ω

j (si,m−1(λi)), and its subjective type distribution to calculate the

probability of each type. Therefore, type θj believes that action am occurs with proba-

bility

ψ̂j(am|ω,λ) ≡
n∑
i=1

π̂j(θi)(F̂
ω
j (si,m(λi))− F̂ ω

j (si,m−1(λi))). (4)

Similarly, there is a wedge between the subjective probability dĜω
i (σ) and the true prob-

ability dGω(σ) of each public signal σ. In a slight abuse of notation, let ψ̂i(a, σ|ω,λ) ≡
ψ̂i(a|ω,λ)dĜω

i (σ) and ψ(at, σt|ω,λt) ≡ ψ(at|ω,λt)dGω(σt) denote θi’s subjective proba-
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bility and the true probability of (a, σ) in state ω, respectively. From these expressions,

we can construct λi(h). Following ht,

λi(ht) =

(
p0

1− p0

) t−1∏
τ=1

ψ̂i(aτ , στ |L,λ(hτ ))

ψ̂i(aτ , στ |R,λ(hτ ))
, (5)

where the second term on the right hand side of (5) captures Pi(h|L)
Pi(h|R)

. As λt ≡ λ(ht) is

sufficient for the history, we suppress the dependence on ht going forward.

From (5), we can define the likelihood ratio recursively. It begins at λi,1 = p0/(1−p0)
for each θi ∈ ΘS. Given λt, following action at and public signal σt, the likelihood ratio

in period t+ 1 updates to

λi,t+1 = λi,t

(
ψ̂i(at, σt|L,λt)
ψ̂i(at, σt|R,λt)

)
. (6)

That is, each type’s model of inference determines the new value of the likelihood ratio.

In contrast, the true probability ψ(at, σt|ω,λt) of each action and public signal deter-

mines the probability that the likelihood ration transitions to this value. In correctly

specified models, ψ̂i(a, σ|ω,λ) = ψ(a, σ|ω,λ), and the likelihood ratio is a martingale in

state R.

The behavior of 〈λt〉∞t=1 determines the learning dynamics for each type. Characteriz-

ing the behavior of this process is challenging. It is an equilibrium object with nonlinear

state-dependent transition probabilities – due to the dependence of equilibrium actions

on the current value of λ, the transition probabilities also depend on λ. This presents a

technical challenge, as the process fails to satisfy standard conditions from the existing

literature on Markov chains.

4 Asymptotic Learning

We study the asymptotic learning outcomes – the long-run beliefs about the state – for

sociable types. Autarkic and noise types do not learn from the history; therefore, their

beliefs following the history are constant across time and their behavior is stationary.

4.1 Asymptotic Learning Outcomes

Without loss of generality, we define asymptotic learning outcomes relative to state R.

Let correct learning (for type θi) denote the event where λt → 0k (λi,t → 0), incorrect

learning (for type θi) denote the event where λt →∞k (λi,t →∞), and cyclical learning

(for type θi) denote the event where λt (λi,t) does not converge. Learning is complete

if correct learning occurs almost surely. Agents asymptotically agree when all sociable

types have the same limit beliefs, λt → {0k,∞k}, and agents disagree when some sociable
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types have incorrect learning and others have correct learning, λt → {0,∞}k \{0k,∞k}.
Learning is mixed if some sociable types have correct or incorrect learning and others

have cyclical learning, while learning is stationary if beliefs converge for all sociable

types.18

4.2 Asymptotic Learning Characterization.

Our main result characterizes the asymptotic learning outcomes in misspecified models.

In correctly specified models, the likelihood ratio is a martingale, and the Martingale

Convergence Theorem can be used to rule out cyclical and incorrect learning. This is not

the case in a misspecified model. With even the slightest misspecification, the likelihood

ratio is no longer a martingale, as any perturbation of a correctly specified model breaks

the equality condition. Therefore, an alternative approach is necessary. We use results

on the stability of nonlinear dynamic systems to characterize the limiting behavior of

the likelihood ratio.

The characterization we develop depends on two expressions that are straightforward

to derive from the primitives of the model, i.e. the type space and the signal distributions.

We first characterize the behavior of the likelihood ratio when it is in a neighborhood of

a learning outcome. We establish necessary and sufficient conditions for the likelihood

ratio to converge to this outcome with positive probability. Second, we determine when

the likelihood ratio converges to a given learning outcome with positive probability, from

any initial belief. This ensures that our characterization holds independent of the prior

belief. Finally, we use these expressions to determine when the likelihood ratio almost

surely converges to a stationary learning outcome.

To simplify notation, we present the case for two sociable types in this section, i.e.

k = 2, and present an analogous derivation for more than two sociable types in Appendix

A.2.

Local Stability. A learning outcome is locally stable if the likelihood ratio converges

to this limit belief with positive probability, from a neighborhood of the belief.

Definition 3 (Local Stability). λ∗ is locally stable if there exists an ε > 0 and neigh-

borhood Bε(λ
∗) such that Pr(λt → λ∗|λ1 ∈ Bε(λ

∗)) > 0.

The first expression for the characterization, the expected change in the log likelihood

ratio, determines whether a learning outcome is locally stable. For type θi, the expected

18We show in Lemmas 1 and 2 that Assumption 3 rules out λt → λ for any λ /∈ {0,∞}k. Therefore,
we do not define this incomplete learning outcome. Regarding disagreement, agents’ beliefs will differ
when beliefs do not converge, converge for some types but not others, and converge to different limit
beliefs. We use the term disagreement to refer to the case in which beliefs converge to different limit
beliefs.
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change in the log likelihood ratio at belief λ depends on the subjective and true proba-

bility of each action,

γi(λ, ω) ≡
∑

(a,σ)∈A×Σ

ψ(a, σ|ω,λ) log

(
ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)

)
. (7)

Equation (7) has a natural interpretation. Suppose the true state is R and fix a belief

λ. Then γi(λ, R) is the difference between (i) the Kullback-Liebler divergence from type

θi’s subjective model in state R, ψ̂i(·|R,λ) to the true model in state R, ψ(·|R,λ) and

(ii) the Kullback-Liebler divergence from θi’s subjective model in state L, ψ̂i(·|L,λ), to

the true model in state R, ψ(·|R,λ). At a given belief λ, if θi’s subjective model in state

L is closer to the true model than θi’s subjective model in state R, then this difference

is positive, γi(λ, R) > 0, and log λi moves towards state L in expectation. Otherwise,

log λi moves towards state R in expectation.

The sign of each component of γ(λ, ω) ≡ (γ1(λ, ω), γ2(λ, ω)) determines local sta-

bility. Let

Λi(ω) ≡ {λ ∈ {0,∞}2|γi(λ, ω) < 0 if λi = 0 and γi(λ, ω) > 0 if λi =∞} (8)

denote the set of stationary learning outcomes in which the expected change in the log

likelihood ratio decreases if λi = 0 and increases if λi =∞, and let

Λ(ω) ≡ Λ1(ω) ∩ Λ2(ω) (9)

denote the set that satisfies this property for both sociable types. We show that a

stationary learning outcome λ∗ is locally stable in state ω if and only if λ∗ ∈ Λ(ω)

(Lemma 3 in Appendix A.1). In other words, if 〈λt〉∞t=1 converges for all sociable types,

then it must converge to a limit random variable whose support lies in Λ(ω). Intuitively,

in order for the likelihood ratio to converge to a given learning outcome with positive

probability, in expectation, the log likelihood ratio must move towards this learning

outcome from nearby beliefs. This also implies that if Λ(ω) is empty, then almost surely

at least one type has cyclical learning.19

This result significantly simplifies the set of possible limit beliefs. It is straightforward

to compute Λ(ω) from the primitives of the model, as we will illustrate in the applications

in Section 5.

19Local stability for k > 2 sociable types is identical, substituting {0,∞}k as the set of candidate
limit beliefs, and Λ(ω) ≡ ∩ki=1Λi(ω) as the locally stable set for all types.
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Mixed Learning. Next we consider the behavior of the likelihood ratio in the neigh-

borhood of a mixed learning outcome. Consider the mixed outcome in which sociable

type θ1 has correct learning, λ∗1 = 0, and sociable type θ2 has cyclical learning. This

outcome will almost surely not arise if at λ∗1 = 0, it is possible for the beliefs of θ2 to

converge, i.e. either (0, 0) or (0,∞) is locally stable for θ2. Intuitively, if 〈λ2,t〉 converges

with positive probability when λ∗1 = 0, then almost surely 〈λ2,t〉 cannot oscillate infinitely

often. Therefore, in order for this mixed outcome to arise with positive probability, it

must be that (0, 0) 6∈ Λ2(ω) and (0,∞) 6∈ Λ2(ω). This ensures that in a neighborhood

of (0, 0) or (0,∞), θ2’s beliefs drift away from this outcome.

Generalizing this intuition, let ΛM(ω) denote the set of mixed learning outcomes in

which there are no locally stable beliefs for the non-convergent type,

ΛM(ω) ≡ {λ∗i ∈ {0,∞}, i ∈ {1, 2}|∀λ−i ∈ {0,∞}, (λ∗i , λ−i) 6∈ Λ−i(ω)}. (10)

We establish that if a mixed learning outcome is not in ΛM(ω), then almost surely it does

not occur (Lemma 6 in Appendix A.1). Therefore, if ΛM(ω) is empty, mixed learning

almost surely does not arise. If both agreement outcomes are locally stable, (0, 0) ∈ Λ(ω)

and (∞,∞) ∈ Λ(ω), or both disagreement outcomes are locally stable, (0,∞) ∈ Λ(ω)

and (∞, 0) ∈ Λ(ω), then ΛM(ω) is empty and no mixed learning outcomes are locally

stable.

It is straightforward to compute ΛM(ω) from Λi(ω). Doing so allows us to study

whether mixed learning is likely to arise in specific forms of model misspecification. In

Section 5, we show that ΛM(ω) is empty for three commonly studied forms of model

misspecification; specifically, mixed learning outcomes almost surely do not arise in these

applications.20

Global Stability. We are interested in a characterization of asymptotic learning that

is independent of the initial belief. Therefore, we need a stronger notion of stability than

local stability. A learning outcome is globally stable if the likelihood ratio converges to

this outcome with positive probability, from any initial belief.

Definition 4 (Global Stability). λ∗ is globally stable if for any initial belief λ1 ∈
(0,∞)2, Pr(λt → λ∗) > 0.

For an agreement outcome, we show that local stability is necessary and sufficient for

global stability (Lemma 4 in Appendix A.1). Aligned signals and preferences (Assump-

20When k > 2, an analogous condition rules out mixed learning outcomes in which a single type has
cyclical learning. We also need to rule out mixed learning outcomes in which more than one type has
cyclical learning. This requires joint conditions on Λi(ω) for the non-convergent types. See Appendix
A.2.
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tions 1 and 2) guarantee that there exist signal and action pairs that move the beliefs

of all types in the same direction. Therefore, we can construct sequences of actions

and signals that occur with positive probability and move the beliefs of all types to a

neighborhood of an agreement outcome. Given this, computing Λ(ω) is the only calcu-

lation necessary to determine whether correct or incorrect learning occurs with positive

probability in state ω. These learning outcomes occur with positive probability if and

only if the corresponding limit beliefs, (0, 0) or (∞,∞), are in Λ(ω).21

Global stability does not immediately follow from local stability for disagreement

outcomes. In contrast to agreement outcomes, it is not always possible to construct a

sequence of action and public signal realizations that push the likelihood ratio arbitrarily

close to the disagreement outcome. There may exist initial values of the likelihood ratio

such that a locally stable disagreement outcome is reached with probability zero. For

example, if two types are sufficiently close to each other, then disagreement may arise

if their initial beliefs are very far apart, but may not be possible if their initial beliefs

are close together. Therefore, a failure of local stability is sufficient to ensure that a

disagreement outcome does not occur, but local stability does not guarantee that the

outcome occurs with positive probability.

For a disagreement outcome to be globally stable, it must be possible to separate the

beliefs for the type converging to λi = 0 and the type converging to λi =∞, starting from

any initial belief. The second expression for the learning characterization is a sufficient

condition to separate beliefs using maximal actions and signals. Recall from Section 2

that there exists a maximal action and public signal in each state. The maximal action

and public signal in state R, denoted (a1, σR), decrease the likelihood ratio, and the

maximal action and public signal in state L, denoted (aM , σL), increase the likelihood

ratio. The maximal L-order partially orders how types update their beliefs following

each maximal action and signal.

Definition 5 (Maximal L-Order). The maximal L-order �λ at likelihood ratio λ is

defined by θi �λ θj iff θi interprets both maximal action and public signal pairs as

stronger evidence of state L than θj,

ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)
≥ ψ̂j(a, σ|L,λ)

ψ̂j(a, σ|R,λ)
(11)

for (a, σ) ∈ {(a1, σR), (aM , σL)}. Define the corresponding strict order �λ if (11) holds

with strict inequality for either (a1, σR) or (aM , σL).

Consider disagreement outcome (0,∞). Suppose that at (0, 0), θ2 interprets both

21This also directly follows from local stability for k > 2 sociable types.
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maximal action and signal pairs as stronger evidence of state L than θ1, i.e. θ2 �(0,0) θ1.

Then in a neighborhood of (0, 0), we can construct a finite sequence of maximal actions

and signals that decrease θ1’s beliefs and increase θ2’s beliefs. Such a sequence occurs

with positive probability, since it is finite. Therefore, θ2 �(0,0) θ1 is sufficient to separate

beliefs in the direction of (0,∞). Similarly, θ2 �(∞,∞) θ1 is also sufficient. The following

definition formalizes this condition for each disagreement outcome.

Definition 6 (Maximal Accessibility). Disagreement outcome (0,∞) is maximally ac-

cessible if θ2 �(0,0) θ1 or θ2 �(∞,∞) θ1, and disagreement outcome (∞, 0) is maximally

accessible if θ1 �(0,0) θ2 or θ1 �(∞,∞) θ2.

As discussed above, from any initial belief, the likelihood enters a neighborhood of

each agreement outcome with positive probability. Maximal accessibility establishes that

a neighborhood of a disagreement outcome is reached with positive probability from a

neighborhood of an agreement outcome. Local stability then establishes convergence.

Therefore, maximal accessibility is a sufficient condition for the global stability of a

disagreement outcome (Lemma 5 in Appendix A.1).22 Once again, this condition is

straightforward to verify from the primitives of the model. As we illustrate in Section

5.1, one needs to verify (11) at (a1, σR) and (aM , σL) for either beliefs (0, 0) or (∞,∞).23

Learning Results. Given the sets Λ(ω) and ΛM(ω) and the disagreement outcomes

that are maximally accessible, we can now complete the asymptotic learning character-

ization. Theorem 1 uses these expressions to characterize the set of asymptotic learning

outcomes in each state.

Theorem 1. Assume there are two sociable types. Given Assumptions 1, 2, 3 and 4

and ω = R:

1. Agreement. Correct learning occurs with positive probability iff (0, 0) ∈ Λ(R)

and incorrect learning occurs with positive probability iff (∞,∞) ∈ Λ(R).

2. Disagreement. Sociable types disagree with positive probability if Λ(R) contains a

maximally accessible disagreement outcome, and sociable types almost surely do not

disagree if Λ(R) contains no disagreement outcomes. Each maximally accessible

disagreement outcome in Λ(R) occurs with positive probability.

22For k > 2 sociable types, we define an analogous notion of maximal accessibility and show that
it is sufficient for global stability. Separating the beliefs of more than two types near an agreement
outcome requires using the maximal L-order to decrease the beliefs of all types that converge to zero
and increase the beliefs of all types that converge to infinity. See Appendix A.2.

23An alternative sufficient condition for the global stability of (0,∞) is (0, 0) ∈ Λ1(ω) \ Λ2(ω) or
(∞,∞) ∈ Λ2(ω) \ Λ1(ω) (i.e. γ1(λ, ω) < 0 and γ2(λ, ω) > 0 for either agreement outcome λ ∈
{(0, 0), (∞,∞)}). This condition can be directly verified from the local stability construction, but it
will not be satisfied in applications in which both agreement outcomes are locally stable. An analogous
condition holds for (∞, 0).
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3. Cyclical Learning. Cyclical learning occurs almost surely for all sociable types if

Λ(R)∪ΛM(R) is empty, and cyclical learning occurs almost surely for at least one

sociable type if Λ(R) is empty. Cyclical learning almost surely does not occur for

any sociable type if Λ(R) contains an agreement outcome or maximally accessible

disagreement outcome and ΛM(R) is empty.

An analogous result holds for ω = L.24

An important feature of this characterization is that it requires calculations at a finite

set of beliefs. In principle, the asymptotic behavior of the likelihood ratio could depend

on its behavior across the infinite belief space [0,∞]2. Since action choices depend

on beliefs, γ(λ, R) may vary with λ and each type’s beliefs may behave differently at

different points in the belief space. However, determining the sign of each component of

γ(λ, R) at all λ ∈ [0,∞]2 is not necessary to characterize the set of asymptotic learning

outcomes. Our characterization establishes that we only need to determine the sign at a

finite set of beliefs: that is, the set of stationary beliefs λ ∈ {0,∞}2. Deriving Λ(ω) and

ΛM(ω) and verifying maximal stability requires calculating the updates to the likelihood

ratio at these four stationary beliefs.25 Therefore, Theorem 1 significantly simplifies the

characterization of asymptotic behavior.

The conditions for correct and incorrect learning are tight. These learning outcomes

arise if and only if the respective limit beliefs are in Λ(ω). For disagreement outcomes,

we establish a sufficient condition for the outcome to occur (maximal accessibility), and

a sufficient condition for outcome not to occur (Λ(ω) empty). In many applications, as

we demonstrate in Section 5, all locally stable disagreement outcomes are maximally ac-

cessible. Therefore, there is no wedge between the sufficient conditions for disagreement

to occur and not to occur – a disagreement outcome arises if and only if it is in Λ(ω).

However, this is not always the case. In particular, when a disagreement outcome is

locally stable but not maximally accessible, whether disagreement arises can depend on

initial beliefs.

If ΛM(ω) is not empty, then mixed learning may arise. Mixed learning presents a

challenge, as we need to consider the movement of the convergent type’s likelihood ratio

across all possible beliefs for the non-convergent type (in contrast to Theorem 1, where

we could restrict attention to stationary beliefs for both types). The following theorem

characterizes sufficient conditions for mixed learning to occur with positive probability.

24The statement of the theorem is identical for more than two sociable tyeps, using the modified
definitions of Λ(ω), ΛM (ω) and maximal accessibility.

25For k > 2, the calculations will be at the finite set of beliefs {0,∞}k.
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Theorem 2. Suppose there are two sociable types, Assumptions 1, 2, 3, 4 are satisfied,

and the true and subjective private signal distributions have a finite number of discon-

tinuities. If mixed outcome λi ∈ ΛM(ω) and (i) supλ−i γi((0, λ−i), ω) < 0 if λi = 0, or

(ii) infλ−i γi((∞, λ−i), ω) > 0 if λi = ∞, then the mixed outcome occurs with positive

probability, and if λi 6∈ ΛM(ω), then the mixed outcome almost surely does not occur.

The intuition is similar to that for convergent learning outcomes. Consider the mixed

learning outcome in which λ1 → 0. A sufficient condition for the likelihood ratio of

type θ1 to converge to zero, independently of λ2, is that the expected change in log λ1

is negative at zero for all possible beliefs of type θ2, i.e. supλ2 γ1((0, λ2), ω) < 0. We

also need to ensure that type θ2’s beliefs do not converge. By definition of ΛM(ω), no

limit beliefs with λ1 = 0 are locally stable for θ2, i.e. (0, 0) 6∈ Λ2(ω) and (0,∞) 6∈ Λ2(ω).

Therefore, θ2’s beliefs do not converge.

Action Convergence. Belief convergence forces action convergence: each type even-

tually settles on an action if and only if its beliefs converge. The limit action choice

is efficient if learning is correct, and otherwise is inefficient. If learning is cyclical for a

type, then that type chooses all undominated actions in the limit – both efficient and

inefficient actions will be chosen infinitely often.

4.3 Robustness of Complete Learning.

An immediate consequence of Theorem 1 is that in correctly specified models, learning

is complete – correct learning occurs almost surely (this also holds for the case of k >

2 in Appendix A.2). Suppose ω = R. When all types are correctly specified, the

likelihood ratio is a martingale. Due to the concavity of the log function, this means

that the expected change in the log likelihood ratio for each type is negative at all

beliefs, γi(λ, R) < 0 for all λ ∈ [0,∞]k. Therefore, 0k is the unique locally stable belief,

Λ(R) = {0k}, and ΛM(R) is empty.

But from Theorem 1, γi(λ, R) < 0 at all interior beliefs is not a necessary condition

for complete learning. If γi(λ, R) < 0 at all stationary beliefs λ ∈ {0,∞}k, then learning

is complete. Further, complete learning may obtain even if γi(λ, R) is positive for some

types at some stationary beliefs. Therefore, Theorem 1 provides much weaker conditions

for complete learning.

Corollary 1. Complete learning obtains if Λ(R) = {0k} and ΛM(R) is empty.

These weaker conditions are important for establishing the robustness of complete learn-

ing in misspecified models, as with even an arbitrarily small amount of misspecification,

the likelihood ratio is no longer a martingale.

The next two theorems establish that correctly specified models are robust to some

misspecification, in that learning is complete when sociable types have approximately

24



correct models. This may not seem surprising, since Bayes rule is continuous. But in an

infinite horizon setting, a small bias in each period has the potential to sum to a large

bias in aggregate. For example, in misaligned learning environments, nearby models with

small per-period differences in belief updating can lead to very different limit beliefs.

When small biases aggregate to large differences, then even arbitrarily small departures

from the correctly specified model will interfere with learning. In principle, this would

substantially limit the applicability of rational learning models to real-world settings.

Theorems 3 and 4 establish that this does not occur in the aligned environments we

consider in this paper.

We first establish that complete learning obtains for any form of misspecification in

which each sociable type’s subjective model of how to interpret actions and public signals

is close enough to the true model. This result depends on the equilibrium probabilities

of actions and public signals at stationary beliefs.

Theorem 3. Given Assumptions 1, 2, 3 and 4, there exists a δ > 0 such that if

|ψ̂i(a, σ|ω,λ)−ψ(a, σ|ω,λ)| < δ at stationary beliefs λ ∈ {0,∞}k for all (a, σ) ∈ A×Σ
and θi ∈ ΘS, then learning is complete in state ω.

Theorem 4 presents a sufficient condition on the type space for complete learning to

obtain. If all sociable types have subjective type and signal distributions close enough

to the true distributions, then learning is complete.26

Theorem 4. Given Assumptions 1, 2, 3 and 4, there exists a δ > 0 such that if ||π̂i −
π|| < δ, ||F̂ ω

i − F ω|| < δ and ||Ĝω
i −Gω|| < δ for all θi ∈ ΘS, then learning is complete

in state ω, where || · || denotes the supremum metric.

These robustness results follow from the continuity of γ(λ, ω) in each type’s subjec-

tive signal and type distributions. In any correctly-specified model, Λ(R) = {0k} and

ΛM(R) = ∅. By continuity, these sets don’t change when some misspecification is in-

troduced. For many important forms of misspecification, including those developed in

Section 5, the parameter space in which complete learning obtains is quite large.

Finally, when some types of agents have misspecified models and other types have

correctly specified models, these misspecified types do not interfere with the learning of

the correctly specified types. A correctly specified type is able to probabilistically parse

out the accurate information conveyed by actions.

26It is also possible for robustness to hold when agents agents are very wrong about the type distri-
bution, as long as the types that they do believe to occur are “close” to the actual types. For example,
suppose that all sociable types are type θ, but believe all types are type θ′ 6= θ. If types θ and θ′ have
similar preferences and subjective signal distributions, then learning is complete.
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Theorem 5. Given Assumptions 1, 2, 3 and 4, learning is complete for all correctly

specified types.

Similar robustness results hold for individual types that have models close to the cor-

rectly specified model.

4.4 Discussion of Results

We briefly discuss the notable features and economic implications of misspecified social

learning models.

Misspecified Social Learning. In social learning settings, model misspecification

interacts with the endogenous informativeness of actions to give rise to several distinct

learning outcomes that do not arise in misspecified learning models with exogenous

information. In particular, incorrect learning and disagreement can arise in both settings,

but cyclical learning and multiple learning outcomes (for example, both incorrect and

correct learning arise with positive probability) are distinct features of misspecified social

learning settings.27 This means that when agents learn from the action choices of their

peers, beliefs and actions may not settle down in the long-run, or long-run learning may

be path-dependent.

Consider an exogenous information setting in which agents learn from the public

signal, but not from the actions of others. Model misspecification takes the form of an

incorrect model of the signal process. For example, agents overreact to new information

or have partisan bias.28 The informational content of the public signal is exogenous,

since the distribution of the public signal is independent of the current belief. Therefore,

γi(λ, ω) is independent of λ and its sign is constant across the belief space. It follows

from Theorem 1 that there is exactly one locally stable learning outcome.29

Corollary 2. In exogenous information settings, |Λ(ω)| = 1 and beliefs almost surely

converge to the unique belief in Λ(ω).

This immediately rules out cyclical learning or convergence to a limit random variable

with multiple learning outcomes in its support. Additionally, there is no wedge between

local and global stability for disagreement outcomes. Since the expected change in the

log likelihood ratio moves in the same direction across the entire belief space, if the

27Similarly, cyclical learning may arise in misspecified experimentation models (Fudenberg et al.
2017; Nyarko 1991). In such settings, information is also endogenous, since the signal depends on the
action choice of the agent.

28As discussed in Section 2.3, this setting is isomorphic to a model with a single long-run agent.
29When information is exogenous, the conditions in Theorem 1 collapse to the standard result that

beliefs converge to the state that minimizes the relative entropy from the misspecified model in this
state to the correct model in the realized state (Berk (1966)).
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unique locally stable learning outcome is a disagreement outcome, then it is maximally

accessible and occurs almost surely.

In contrast, in social learning settings, agents can also be misspecified about how

other agents learn, and their models of how to interpret actions vary with beliefs. Belief

convergence requires that when agents are almost certain of a state, the action frequen-

cies they observe confirm their model in that state. If agents are “surprised” when they

are almost certain of either state, this leads to cyclical learning (i.e. |Λ(ω)| = 0). In con-

trast, if there are multiple learning outcomes near which the action frequencies confirm

each type’s model at that outcome, then multiple learning outcomes occur with positive

probability (i.e. |Λ(ω)| > 1).

Economic Implications of Misspecification. These distinct features have impor-

tant economic implications. Cyclical learning is a failure of beliefs (and actions) to settle

down, even after an arbitrarily long period of time. This means that in the long-run,

action choices oscillate infinitely often between efficient and inefficient actions. For ex-

ample, in Section 5.3, we present a setting in which agents learn about the riskiness of

a behavior, e.g. binge drinking. Their misspecified model of the preferences of others

leads to perpetual oscillation between risky and safe behavior.

When multiple learning outcomes arise, agents become arbitrarily certain about mul-

tiple states. An initial signal that, for instance, a medical technology is dangerous or a

new restaurant is low quality when in fact the opposite is true can lead to this miscon-

ception becoming entrenched and beliefs converging to the incorrect state. In contrast, if

the initial signal had been positive, agents would have learned the correct state. There-

fore, a multiplicity of learning outcomes leads to path dependent learning. This can

explain why different populations with similar models can come to have very different

entrenched views.

Focus on Asymptotic Learning. When incorrect learning, non-convergence, dis-

agreement or multiple learning outcomes arise asymptotically, this illustrates that even

if there is an infinite amount of information, we should still expect to observe these

“negative” learning outcomes. Therefore, we should also expect to observe inefficient

choices, disagreement and belief cycles in finite time. Importantly, the asymptotic re-

sults establish that the source of these inefficiencies does not solely stem from a lack

of sufficient information to learn the state. Agents are bounded away from efficiency,

irrespective of the amount of information that they observe.

Characterizing the speed of learning is also an interesting question. The expression

γi(λ, ω) that we use to characterize the locally stable set also determines the asymptotic

speed of convergence. The larger this term is in magnitude, the faster the rate of

convergence to (or, depending on the sign, the faster the rate of divergence from) the
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candidate limit belief from a neighborhood of this belief.

Relation to Informational Herding. Convergence to multiple limit beliefs also oc-

curs in correctly specified social learning settings with informational herds (Banerjee

1992; Bikhchandani et al. 1992; Smith and Sorensen 2000). In contrast to misspecified

settings, all but at most one of these limit beliefs must be non-degenerate (i.e. incom-

plete learning). This difference is economically important. In correctly specified models,

informational herds are fragile (Bikhchandani et al. 1992). Even though all agents are

playing the same action, they remain uncertain about the state. Therefore, a herd of

any length can be overturned by a relatively uninformative public signal or other piece

of new information. In contrast, when an incorrect herd persists in our setting, beliefs

almost surely converge to the incorrect state. This implies that longer herds will become

increasingly difficult to overturn.

Learning from Outcomes. In many situations, agents learn from observing the out-

comes of others’ choices, rather than directly observing their actions. Our learning

characterization directly extends to such settings. In Appendix B, we develop the ana-

logue of Theorem 1 for a setting in which agents observe stochastic outcomes, rather

than actions. The application in Section 5.3 illustrates the implications of model mis-

specification in this setting.

5 Applications

Next, we demonstrate how our framework can capture three forms of model misspecifi-

cation prominent in the empirical literature: strategic misspecification, signal misspeci-

fication and preference misspecification. For the first category, we demonstrate how our

framework can be used to model learning with cognitive hierarchy and level-k models.

For the second category, we apply our framework to a setting in which agents slant their

beliefs towards a preferred state, exhibiting partisan bias. For the third category, we ex-

plore social perception biases, which include pluralistic ignorance and the false consensus

effect. For each category, we illustrate how to calculate the set of asymptotic learning

outcomes and derive comparative statics for how this set changes with the parameters

of the misspecification. Similar to our robustness results for correctly specified models,

our results for these misspecified models are robust: the insights are not sensitive to the

exact parameterization used to pin down each bias.

5.1 Strategic Misspecification: Level-k and Cognitive Hierarchy

Cognitive hierarchy and level-k models describe how boundedly rational agents draw

inference in strategic settings (Camerer, Ho, and Chong 2004; Costa-Gomes, Crawford,

and Iriberri 2009). Agents in these models are characterized by their “depth” of reason-
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ing. The most unsophisticated type, level-0, chooses an action without learning from

signals or the actions of others. The other levels correspond to the number of iterated

best responses to uninformative level-0 play. Level-1 learns from its own signal but be-

lieves that others are level-0, and therefore, does not learn from their actions. Higher

levels use progressively more sophisticated reasoning. These models can be viewed as

a form of misspecification in which agents have an incorrect model of the strategic link

between prior actions.30

Penczynski (2017) analyzes experimental data on social learning to determine whether

it is consistent with level-k reasoning. He finds evidence of model heterogeneity and in-

ferential naivety. Most agents are level-1, 2 or 3 types, with a modal type of level-2.

In this application, we study a setting with level-1, 2 and 3 types. In the level-k pa-

rameterization, level-3 believes all agents are level-2, while in the cognitive hierarchy

parameterization, level-3 places positive probability on level-1 and level-2 types. We

characterize asymptotic learning in both parameterizations.

Types Framework. In the framework of this paper, each level corresponds to a type,

Θ = {θ0, θ1, θ2, θ3}. Level-0 believes that private signals and prior actions are uninfor-

mative, i.e. r0(s) = 1/2 and π̂0(θ0) = 1. The level-1, 2 and 3 types correctly interpret

private information, ri(s) = s, but have a misspecified model of how others draw infer-

ence. This is captured by a misspecified type distribution. Level-1 types believe that

prior actions are uninformative, i.e. all other agents are level-0, π̂1(θ0) = 1. Level-2 types

believe prior actions solely reflect private information from level-1 types, i.e. π̂2(θ1) = 1.

They do not understand that prior actions reflect both private information and redun-

dant information from the prior actions of others. Therefore, they fail to parse out this

redundant information. Level-3 types are the most sophisticated: they understand that

prior actions contain redundant information, but they do not allow for the possibility

that other agents also account for this. They believe that some agents act solely based

on their private information, i.e. π̂3(θ1) = 1 − q for q ∈ (0, 1), and other agents do not

account for redundant information, i.e. π̂3(θ2) = q, but they do not account for the

presence of other level-3 types, i.e. π̂3(θ3) = 0. In this set-up, level-0 is a noise type,

level-1 is an autarkic type, and level-2 and level-3 are sociable types. Note that the

correctly specified model is not a special case of this set-up for either level-2 or level-3

types, as neither type is aware of the level-3 type.

To close the model, assume that level-0 types do not actually exist in the population,

30The level-2 type corresponds to the “BRTNI” agents in Eyster and Rabin (2010) and the “naive
Bayesians” in Hung and Plott (2001). In Eyster and Rabin (2010), all agents are level-2, but believe
that all other agents are level-1. Bohren (2016) can be interpreted as a modified level-k model in which
agents are level-1 or level-2, and level-2 agents have a misspecified distribution about the share of other
level-2 agents.
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π(θ0) = 0, level-1 types occur with positive probability, π(θ1) ∈ (0, 1), there are no public

signals, and all types have common prior p0 = 1/2. We consider a binary action setting

in which all types earn a payoff of one from choosing the action that matches the state,

u(a, ω) = 1a=ω, where A = {L,R}.31

Trivially, preferences and signals are aligned (Assumptions 1 and 2), since all agents

have the same preferences and a correctly specified model of private signals. Level-1 types

occur with positive probability, π(θ1) > 0, so adequate information arrives (Assumption

3). Level-2 and level-3 types believe that level-1 types occur with positive probability,

π̂2(θ1) > 0 and π̂3(θ1) > 0, so all action histories are consistent with these types’ models

of inference (Assumption 4).

Action Choices and Beliefs. We first construct the action choices and likelihood

ratio for each type. Let λ = (λ2, λ3) denote the vector of likelihood ratios for the

sociable types, θ2 and θ3.

A level-1 type incorporates solely its private information into its decision, and its

likelihood ratio is constant across time, λ1,t = 1 for all t. When agent t is level-1, she

chooses at = L iff st ≥ 1/2. The informational content of her action is independent of

the history: she chooses action R with probability F ω(1/2), i.e. the probability that a

private signal is less than 1/2, and action L with probability 1− F ω(1/2).

A level-2 type believes all past actions are from level-1 types. Its subjective proba-

bility of each R action in the history is the probability that a level-1 type chooses action

R, ψ̂2(R|ω,λ) = F ω(1/2). Analogously, its subjective probability of each L action is

ψ̂2(L|ω,λ) = 1 − F ω(1/2). These probabilities are independent of the action history.

Therefore, the number of R and L actions is a sufficient statistic for the likelihood ra-

tio of a level-2 type. One way to view the level-2 type is an agent who uses a simple

heuristic: count the number of L and R actions in the history, and use this number to

form beliefs. When agent t is level-2, she chooses at = L iff st ≥ 1/(λ2,t + 1). The infor-

mational content of an action from a level-2 type does depend on the history, through

belief λ2,t.

A level-3 type believes past actions are from either level-1 or level-2 types. Its

subjective probability of an R action is a weighted average of the probability that level-

1 and level-2 types choose action R. When level-2 has belief λ2, she chooses an R action

with probability F ω(1/(λ2 + 1)). Therefore, level 3’s subjective probability of an R

action is

ψ̂3(R|ω,λ) = (1− q)F ω(1/2) + qF ω

(
1

λ2 + 1

)
. (12)

31These assumptions are made for expositional simplicity. The results from Section 4 apply to any
level-k model in which the level-1 type occurs with positive probability, π(θ1) > 0.
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The subjective probability of an L action is analogous. Both of these probabilities

depend on the current belief of a level-2 type. Therefore, how a level-3 type updates its

belief depends on the current belief of the level-2 types. When agent t is level-3, she

chooses at = L iff st ≥ 1/(λ3,t + 1).

The true probability of an R action at time t depends on the correct distribution

over types and the current belief of each type,

ψ(R|ω,λ) = π(θ1)F
ω(1/2) + π(θ2)F

ω

(
1

λ2 + 1

)
+ π(θ3)F

ω

(
1

λ3 + 1

)
. (13)

This is the distribution that governs the transition probabilities of 〈λt〉.
We are interested in the asymptotic learning outcomes of level-2 and level-3 types,

since these types learn from the action choices of others. There are four candidate

learning outcomes: correct learning for both types, ((0, 0) when ω = R), incorrect

learning for both types, ((∞,∞) when ω = R), and disagreement, (0,∞) or (∞, 0).

Asymptotic Learning Characterization: Level-k. We study an approximation of

the level-k parameterization in which the level-3 type places an arbitrarily small probabil-

ity on the level-1 type and the remaining probability on the level-2 type, q ≈ 1.32 Using

Theorem 1, we characterize asymptotic learning outcomes in three steps: (i) construct

the set of locally stable learning outcomes Λ(ω), (ii) show both disagreement outcomes

are maximally accessible, and (iii) show ΛM(ω) is empty. It follows from (ii) and (iii)

that Λ(ω) fully characterizes the set of asymptotic learning outcomes. This establishes

how asymptotic learning depends on the true distribution over types, and illustrates how

our framework of model misspecification can rationalize entrenched disagreement.

To construct Λ(ω), we use the ψ and ψ̂i expressions derived above to determine

the sign of γ2(λ, ω) and γ3(λ, ω) at each learning outcome. Suppose the true state

is ω = R and consider the correct learning outcome, (0, 0). Both level-2 and level-

3 types choose action R for all signals. Therefore, the level-3 type believes that R

actions are uninformative, limq→1
ψ̂3(R|L,(0,0))
ψ̂3(R|R,(0,0))

= 1 and L actions are from level-1 types,

limq→1
ψ̂3(L|L,(0,0))
ψ̂3(L|R,(0,0))

= 1−FL(1/2)
1−FR(1/2) . Since only level-1 types play action L, the true probability

of an L action is π(θ1)(1− FR(1/2)). Therefore,

γ3((0, 0), R) ≈ π(θ1)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
> 0

and correct learning is not locally stable for level-3 types, (0, 0) 6∈ Λ3(R). Intuitively,

near correct learning, level-3 types underestimate the informational content of confirming

32The exact parameterization of the level-k model, i.e. q = 1, violates Assumption 3.
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R actions, since they do not account for level-1 types also playing R, but they correctly

infer the informational content of contrary L actions, since they correctly attribute them

to level-1 types. This pulls their belief towards state L in expectation (i.e. away from

0). Similarly,

γ3((∞,∞), R) ≈ π(θ1)F
R(1/2) log

(
FL(1/2)

FR(1/2)

)
< 0

and incorrect learning is not locally stable for level-3 types, (∞,∞) 6∈ Λ3(R). Now, level-

3 types underestimate the informational content of confirming L actions, but correctly

infer the informational content of contrary R actions. This establishes that correct

learning and incorrect learning almost surely do not occur, as these outcomes are not

locally stable for level-3 types.

This leaves the disagreement outcomes as candidate learning outcomes. Consider

the disagreement outcome (0,∞) in which level-2 has correct learning and level-3 has

incorrect learning. In this outcome, level-3 believes that R actions are from level-2 types

and are approximately uninformative, while L actions are from level-1 types and are

therefore informative. The level-3 type is now misspecified about the informativeness

of both L and R actions, as it does not account for informative R actions from level-1

types nor uninformative L actions from other level-3 types. The misspecification about

the contrary R action dominates, pushing level-3’s belief towards state L in expectation.

Therefore, the disagreement outcome is locally stable for level-3,

γ3((0,∞), R) ≈ (π(θ1)(1− FR(1/2)) + π(θ3)) log

(
1− FL(1/2)

1− FR(1/2)

)
> 0.

The intuition is similar for disagreement outcome (∞, 0). It is locally stable for level-3,

γ3((∞, 0), R) ≈ (π(θ1)F
R(1/2) + π(θ3)) log

(
FL(1/2)

FR(1/2)

)
< 0.

Next, we determine whether the disagreement outcomes are locally stable for level-2

types. Level-2 types believe that all actions are from level-1 types. Therefore, they

interpret L and R actions in the same way at both disagreement outcomes. However,

at (0,∞), the true probability an R action is π(θ1)F
R(1/2) + π(θ2), while at (∞, 0), it
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is π(θ1)F
R(1/2) + π(θ3). Therefore,

γ2((0,∞), R) =(π(θ1)F
R(1/2) + π(θ2)) log

(
FL(1/2)

FR(1/2)

)
+ (π(θ1)(1− FR(1/2)) + π(θ3)) log

(
1− FL(1/2)

1− FR(1/2)

)
and

γ2((∞, 0), R) =(π(θ1)F
R(1/2) + π(θ3)) log

(
FL(1/2)

FR(1/2)

)
+ (π(θ1)(1− FR(1/2)) + π(θ2)) log

(
1− FL(1/2)

1− FR(1/2)

)
.

The signs of these expressions vary with the true distribution of types. When

π(θ1)(2F
R(1/2)− 1) + π(θ2)− π(θ3) > 0,

γ2((0,∞), R) < 0 and (0,∞) ∈ Λ2(R). Given (0,∞) ∈ Λ1(R), this implies (0,∞) ∈
Λ(R). When π(θ1)(2F

R(1/2) − 1) − π(θ2) + π(θ3) < 0, γ2((∞, 0), R) > 0 and (∞, 0) ∈
Λ2(R). This implies (∞, 0) ∈ Λ(R). Otherwise, neither disagreement outcome is locally

stable for level-2 and Λ(R) is empty. The construction of Λ(L) is identical.

When Λ(ω) contains a disagreement outcome, we need to check whether the dis-

agreement outcome is maximally accessible to determine whether it occurs with positive

probability from any initial belief. At beliefs (0, 0), θ2 believes that more R actions

are arriving from level-1 types than θ3, and therefore, θ3 �(0,0) θ2. Similarly, at be-

liefs (∞,∞), θ2 believes more L actions are arriving from level-1 types than θ3, and

θ2 �(∞,∞) θ3. Therefore, both disagreement outcomes are maximally accessible.

Finally, we need to rule out mixed learning outcomes in which θ2’s beliefs converge,

but θ3’s beliefs cycle, or vice versa. Given the signs of γ2 and γ3 characterized above,

this would imply that one of the agreement vectors is locally stable, a contradiction.

Therefore, ΛM(ω) is empty and mixed learning does not arise.

Proposition 1 summarizes this construction. Since ΛM(R) is empty and both dis-

agreement outcomes are maximally accessible, Λ(ω) fully determines the set of asymp-

totic learning outcomes.

Proposition 1 (Level-k). In the level-k model (q ≈ 1), either (i) almost surely learn-

ing is cyclical and Λ(ω) = ∅; or (ii) disagreement occurs almost surely and Λ(ω) is

a nonempty subset of {(0,∞), (∞, 0)}. A disagreement outcome occurs with positive

probability iff it is in Λ(ω).
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Figure 1. Level-k Learning Outcomes
(ω = R, FL(s) = 5

3 (s2 − .04), FR = 10
3 (s− 1

2s
2 − 3/5))

1. Cyclical learning: there exists a cutoff π̄3 ∈ (0, 1) such that if π(θ3) > π̄3, then

almost surely learning is cyclical.

2. Disagreement: there exists a cutoff π̄2 ∈ (0, 1) such that if π(θ2) > π̄2, then both

disagreement outcomes arise with positive probability.

3. Suppose the private signal distribution is symmetric. If (∞, 0) ∈ Λ(R), then

(0,∞) ∈ Λ(R) and if (0,∞) ∈ Λ(L), then (∞, 0) ∈ Λ(L).33

There are three distinct regions of learning, which depend on the true distribution over

types. If a large share of agents are level-3 types, then learning is cyclical. Level-

3 types underweight confirmatory actions and are too responsive to contrary actions.

This causes both types to doubt their current beliefs and never become certain of either

state. As the share of level-2 types increases, convergence becomes possible. For an

intermediate share of level-2 types, the disagreement outcome in which level-2 learns

the correct state and level-3 learns the incorrect state almost surely arises. A surprising

finding is that a higher level of reasoning may perform strictly worse than a lower level

of reasoning. For a large share of level-2 types, both disagreement outcomes arise. In

this case, learning is path dependent. Two different populations who learn about the

same state from different action histories may converge to different long-run beliefs. In

both cases, disagreement is driven by the level-2 type’s desire to imitate and the level-3

type’s desire to anti-imitate. Penczynski (2017) estimates that most agents are level-2

33More generally, (∞, 0) ∈ Λ(R) ⇒ (0,∞) ∈ Λ(R) when (i) log 1−FL(1/2)
1−FR(1/2)

≤ − log FL(1/2)
FR(1/2)

; (ii)

log 1−FL(1/2)
1−FR(1/2)

> − log FL(1/2)
FR(1/2)

and π(θ1) > π̄1 for some cutoff π̄1 ∈ (0, 1). A similar result holds for

ω = L.
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and very few are level-3. His estimates of the population distribution lead to learning

outcomes that lie in the disagreement region. Figure 1 illustrates these learning regions.

Asymptotic Learning Characterization: Cognitive Hierarchy. In the cognitive

hierarchy parameterization of this set-up, we study how asymptotic learning varies with

the level-3 type’s belief q about the frequency of level-2 types. To simplify notation,

assume that the types are evenly distributed, π(θ1) = π(θ2) = π(θ3) = 1/3, and private

signals are symmetrically distributed across states, FL(1/2) = 1− FR(1/2). Similar to

the level-k parameterization, we construct Λ(ω) for each q, show that ΛM(ω) is empty

and that both disagreement outcomes are maximally accessible. Again, Λ(ω) fully char-

acterizes the set of asymptotic learning outcomes.

Proposition 2 characterizes how asymptotic learning outcomes depend on q.

Proposition 2 (Cognitive Hierarchy). The likelihood ratio almost surely converges to a

limit random variable with support Λ(ω) 6= ∅. When ω = R, there exist unique cutoffs

0 < q1 < q2 < q3 < 1 such that:

1. If q < q1, then incorrect and correct learning occur with positive probability, Λ(R) =

{(0, 0), (∞,∞)}.

2. If q ∈ (q1, q2), then incorrect learning, correct learning and disagreement occur with

positive probability, Λ(R) = {(0, 0), (∞,∞), (0,∞)}.

3. If q ∈ (q2, q3), then correct learning and disagreement occur with positive probabil-

ity, Λ(R) = {(0, 0), (0,∞)}.

4. If q > q3, then disagreement occurs almost surely, Λ(R) = {(0,∞)}.

An analogous result holds for ω = L.

When q is low, level-3 types believe most agents are level-1 and they behave similarly

to level-2 types. Both types overweight confirming actions and underweight contrary

actions. Initial actions have an outsize effect on asymptotic beliefs, as the information

from these actions is amplified in every subsequent action. Therefore, whether initial

actions are correct or incorrect will influence whether beliefs build momentum on the

correct or incorrect state, leading to either correct or incorrect learning. The models of

level-2 and level-3 types are very close, and asymptotic disagreement is not possible.

As q increases, level-2 and level-3 types interpret the action history in an increasingly

different way, and disagreement becomes possible. Further, as q increases, level-3 types

move closer to the level-k model in which they anti-imitate the more frequent action.

Even though level-2’s model does not change, the shift in level-3’s model leads to be-

havior that moves level-2’s model closer to the correctly specified model. Therefore,
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Figure 2. Cognitive Hierarchy Learning Outcomes
(ω = R, FL(s) = 5

3 (s2 − .04), FR(s) = 10
3 (s− 1

2s
2 − 3/5))

disagreement takes a specific form: level-2 learns the correct state, while level-3 learns

the incorrect state. Once q is sufficiently large, this disagreement outcome becomes

the unique learning outcome, and level-3 almost surely learns the incorrect state, while

level-2 almost surely learns the correct state.

Figure 2 plots the probability of each learning outcome, as a function of q. Increasing

q monotonically increases the probability that level-2 learns the correct state, as level-3’s

behavior mitigates level-2’s bias. However, increasing q has a non-monotonic effect on

the probability that level-3 learns the correct state. At first, raising q moves level-3’s

model closer to the true model, as they become aware of level-2 types. This increases

the probability of complete learning. But above q = .55, increasing q moves level-3’s

model further from the true model, as they begin to overestimate the frequency of level-2

types. In this specification, q1 = .01, q2 = .55 and q3 = .76.

While this example focuses on a particular distribution of types, π = (0, 1/3, 1/3, 1/3),

a robustness result that is similar in spirit to Theorem 3 establishes that Proposition 2

holds for nearby type distributions.

5.2 Signal Misspecification: Partisan Bias

A literature in economics, psychology and political science has documented settings in

which individuals systematically slant information towards a particular state. Motivated

reasoning (Kunda 1990) leads individuals to systematically slant information towards

a preferred state (i.e. personal intelligence) due to self-image concerns (Bénabou and

Tirole 2011), ego utility (Köszegi 2006) or optimism (Brunnermeier and Parker 2005).

Party affiliation impacts information-processing: individuals are better at recalling facts

that support their political position (Jerit and Barabas 2012), and individuals update

their evaluations of candidates in response to new information in a way that is favorable
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towards their political position (Bartels 2002).

We show that when agents systematically slant their interpretation of signals towards

a particular state – that is, they exhibit what we refer to as partisan bias – this can

impede the convergence of beliefs or lead to incorrect learning. We model partisan bias

as a form of misspecification about the signal distributions in each state, and remain

agnostic as to its source. We characterize how the severity of the partisan bias and the

frequency of agents who exhibit the bias affects asymptotic learning for both partisan

and non-partisan types.

Types Framework. Suppose that there are two ways in which agents process in-

formation. Some individuals, who we refer to as partisan types, systematically slant

information towards state L. Following any private signal, these partisan types believe

that state L is more likely than it actually is, given the true measure over signals. We

model this as a misspecified private signal distribution F̂ ω
i (s) = F ω(sν), where ν ∈ (0, 1)

parameterizes the level of partisan bias and the true distribution of signals has support

S = [0, 1]. Given any private signal s, the partisan type’s subjective private belief is

greater than the true private belief, ri(s) = sν > s.34 Other individuals, who we refer

to as nonpartisan types, correctly interpret private information, F̂ ω
i (s) = F ω(s). The

nonpartisan type’s subjective private belief is equal to the true private belief, ri(s) = s.

Suppose that some partisan and nonpartisan agents observe the history, and others

do not. Therefore, there are four types, Θ = {θ1, θ2, θ3, θ4}. Types θ1 and θ3 are partisan

sociable and autarkic types, respectively, with F̂ ω
1 (s) = F̂ ω

3 (s) = F ω(sν). Types θ2 and θ4

are nonpartisan sociable and autarkic types, respectively, with F̂ ω
2 (s) = F̂ ω

4 (s) = F ω(s).

Let q ≡ π(θ3) + π(θ1) ∈ (0, 1) denote the share of partisan types. Suppose that an

equal share α ∈ (0, 1) of partisan and nonpartisan types are autarkic, π(θ3) = αq and

π(θ4) = α(1− q).
In the presence of partisan types, there is an additional challenge to learn from the

actions of others, relative to a model in which all agents correctly interpret private

signals. To accurately interpret actions, an agent must be aware of the partisan types,

and have a correct model of both their level of bias (i.e. ν) and their frequency in the

population (i.e. q). We assume that agents are not this sophisticated. In particular,

both partisan and nonpartisan types exhibit a false consensus effect: they believe that

all agents interpret private information in the same manner as themselves (Marks and

Miller 1987). Although sociable nonpartisan types have a correct model of the signal

34An alternative interpretation for partisan bias is a type who believes that signals are manipulated
towards state R. For instance, suppose vaccines are dangerous in state L and safe in state R. Then a
type who believes that the government exaggerates safety information will look at a study of vaccine
safety and believe that the results are exaggerated to some degree, i.e. a signal of reported strength s
was actually a signal of strength sν before it was manipulated.
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distribution, they incorrectly assume that other agents do as well. Therefore, they do

not invert the bias of the partisan types when learning from actions. This corresponds

to believing that no types have partisan bias, π̂2(θ1) = π̂2(θ3) = 0. In contrast, partisan

types have a correct model of how other partisan types interpret information, but they

have an incorrect model of the signal distribution driving this process and an incorrect

model of how nonpartisan types interpret information. This corresponds to believing

that all types have partisan bias, π̂1(θ2) = π̂1(θ4) = 0.

To close the model, assume that both partisan and nonpartisan sociable types cor-

rectly understand how to account for redundant information in actions – that is, they

have correct beliefs about the share of autarkic types in the population. Consider a

binary action setting A = {L,R} in which all types earn a payoff of one from choosing

the action that matches the state, u(a, ω) = 1a=ω. Although partisan and nonpartisan

agents agree on the optimal action when the state is known, they will potentially dis-

agree on the optimal action following imperfect signals, as the partisan types will believe

that signals are more favorable towards state L than nonpartisan types. Assume that

there are no public signals and all types have common prior p0 = 1/2.35

In this set-up, signals are aligned (Assumption 1), since partisan types order signals

in the same way as nonpartisan types, i.e. sν is increasing in s. Trivially, preferences

are aligned (Assumption 2), since all agents have the same preferences. Autarkic types

occur with positive probability, α > 0, so adequate information arrives (Assumption 3),

and sociable types have a correct belief about the share of autarkic types, so all action

histories are consistent (Assumption 4).

Action Choices and Beliefs. We first construct the action choices and likelihood ra-

tios for each type. At belief λ and signal s, each type θi chooses action R iff λ
(

ri(s)
1−ri(s)

)
≤

1. Therefore, given λ, the sociable partisan type plays action R following signals

s ≤ s1(λ) = 1/(1 + λ)1/ν , while the sociable nonpartisan type plays action R following

signals s ≤ s2(λ) = 1/(1 + λ). Similarly, the autarkic partisan type plays action R

following signals s ≤ (1/2)1/ν , while the autarkic nonpartisan type plays action R fol-

lowing signals s ≤ 1/2. The partisan type’s cut-off to choose action L is lower than the

nonpartisan type’s, s1(λ) < s2(λ) – at any belief, the partisan type chooses action L for

a larger interval of signals, and therefore, with higher frequency.

A partisan type believes that other agents interpret information in the same way.

Therefore, it believes that all other agents use cut-off s1(λ), whereas fraction 1 − q of

agents are actually using cut-off s2(λ). Additionally, it has a misspecified model of the

signal distribution – it believes that signals are below s1(λ) in state ω with probability

35The results from Section 4 apply to any partisan bias model in which α > 0, the sociable types
believe that α > 0 and preferences are aligned.
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F̂ ω
1 (s1(λ)), which is greater than the true probability F ω(s1(λ)). Therefore, the partisan

type underestimates the range of signals for which other agents choose action R and

overestimates the probability of these signals. Its subjective probability of an R action

is

ψ̂1(R|ω, (λ1, λ2)) = (1− α)F̂ ω
1 (s1(λ1)) + αF̂ ω

1 ((1/2)1/ν)

= (1− α)F ω(s2(λ1)) + αF ω(1/2),

where the second equality follows from s1(λ) = s2(λ)1/ν and F̂ ω
1 (s) = F ω(sν). This is

greater than the true probability that a partisan type plays an R action, due to the

signal misspecification.

A nonpartisan type believes that other agents are also nonpartisan and use cut-off

s2(λ), and it has a correctly specified model of the signal distribution. Therefore, it

overestimates the range of signals for which other agents choose action R, since partisan

types are using cut-off s1(λ) < s2(λ), but it correctly estimates the probability of these

signals. The nonpartisan type’s subjective probability of an R action is

ψ̂2(R|ω, λ1, λ2) = (1− α)F ω(s2(λ2)) + αF ω(1/2).

This is equal to the true probability that a nonpartisan type plays an R action, but is

strictly greater than the true probability of an R action, due to the failure to account

for partisan types.

If λ1 = λ2, then ψ̂1(R|ω, λ1, λ2) = ψ̂2(R|ω, λ1, λ2). Therefore, if the partisan and

nonpartisan sociable types start with a common prior, both types update their likeli-

hood ratio in the same way following each action, and after any history ht, λ1,t = λ2,t.

Although these types have different models of the world, their models collapse to the

same subjective probability of each action. For different reasons, they both update too

much towards state L following L actions and update too little towards state R following

R actions. This means that we can consider the partisan and nonpartisan sociable types

as a single type to characterize asymptotic learning.36 It also rules out the possibility of

disagreement or mixed learning, since the two likelihood ratios move in unison.

Asymptotic Learning Characterization. When partisan bias slants towards the

incorrect state (i.e. when ω = R), then the learning outcome depends on the severity of

the partisan bias. Given each type’s model of actions derived above, ψ̂1 and ψ̂2, both

types overweight L actions and underweight R actions. If a large share of agents have

36It does not imply that a partisan and nonpartisan type with belief λ and private signal s will
choose the same action, as they have different private signal cut-offs.
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partisan bias (i.e. q close to one) or partisan bias is severe (i.e. ν close to zero), then this

misspecification pulls the beliefs of both types towards state L and they almost surely

learn the incorrect state. If partisan bias is not severe (i.e. ν close to one) or few agents

have partisan bias (i.e. q close to zero), overweighting L actions is not significant enough

to interfere with learning and both types learn the correct state. For intermediate values

of ν and q, learning is cyclical. Agents believe L actions are not very informative when

beliefs are close to state L, as most agents are choosing L for a large range of signals.

This prevents incorrect learning. But these agents also believe R actions are not very

informative when beliefs are close to state R, and therefore, L actions pull beliefs away

from state R and prevent correct learning.

When partisan bias slants towards the correct state (i.e. when ω = L), then learning

is complete regardless of the frequency of partisan types or their level of bias. Partisan

bias simply speeds up the rate at which beliefs converge. Proposition 3 formalizes these

results.

Proposition 3 (Partisan Bias). When ω = R, there exists an q ∈ (0, 1) such that for

q > q, there exist unique cutoffs 0 < ν1(q) < ν2(q) < 1 such that:

1. If ν > ν2(q), then almost surely learning is correct, Λ(R) = {(0, 0)}.

2. If ν ∈ (ν1(q), ν2(q)), then almost surely learning is cyclical, Λ(R) = ∅.

3. If ν < ν1(q), then almost surely learning is incorrect, Λ(R) = {(∞,∞)}.

and there exists a q < q such that for q < q, almost surely learning is correct. When

ω = L, almost surely learning is correct, Λ(L) = {(0, 0)}.

Figure 3 illustrates how the asymptotic learning outcomes depend on the frequency

q of partisan types and the degree of their bias ν. Proposition 3 and Figure 3 also

illustrate the robustness of the correctly specified model (Theorem 3), in which q = 0

and ν = 1: for (q, ν) close enough to (0, 1), learning is complete. The size of the robust

region is quite large: when the degree of partisan bias is small, then correct learning

obtains even if all agents have partisan bias (q = 1), and when the share of partisan

types is small, then correct learning obtains even if these partisan types have a very

severe bias (ν ≈ 0).

5.3 Payoff Misspecification: Social Perception Biases

Research on social perception has documented settings in which individuals overesti-

mate the population prevalence of their preferences, opinions or behaviors – that is,

they perceive a false consensus (Ross et al. 1977). False consensus effects are generally
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Figure 3. Partisan Bias Learning Outcomes
(ω = R, α = .1, FL(s) = s2, FR(s) = 2s− s2)

found for non-normative behaviors. For example, adolescents have been found to ex-

hibit a false consensus effect for estimating peers’ smoking choices (Sherman, Presson,

Chassin, Corty, and Olshavsky 1983), the prevalence of excessive drinking (Suls, Wan,

and Sanders 1988) and peer sexual activity Whitley (1998).

In other social settings, individuals perceive a discrepancy between their preferences

and behavior, and the preferences and behavior of others – that is, they exhibit pluralistic

ignorance. For example, pluralistic ignorance has been documented with respect to

perceptions of gender stereotypes (Prentice and Miller 1996), the extent of others’ social

inhibition (people underestimate it, relative to their own inhibition) and the inclination

of others to choose a beneficial action that may have embarrassing consequences (people

overestimate it, relative to their own inclination) (Miller and McFarland 1987). In

contrast to the false consensus, pluralistic ignorance often arises in contexts where there

is widespread behavioral adherence to a social norm, or where individuals believe that

a negative trait affects their own behavior but not others’ behavior.

We show that when agents systematically overestimate the similarity between their

own preferences and the preferences of others – exhibiting the false consensus effect – this

can lead to incorrect learning; when agents systematically underestimate this similarity

– exhibiting pluralistic ignorance – this can prevent beliefs from converging. We model

these social perception biases as a form of misspecification about the preferences of other

agents. We utilize the outcomes framework discussed in Section 4.4 to characterize how

the severity of social misperception affects asymptotic learning when individuals learn

from the outcomes of others.37

37See Appendix B for the formal presentation of the learning from outcomes framework.
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Types Framework. Suppose agents choose between engaging in a safe or risky be-

havior, denoted by actions a1 or a2, respectively. An agent’s action affects her payoff-

relevant outcome: she either fails or passes, denoted by outcomes x1 or x2, respectively.

The risky behavior is enjoyable, but increases the probability of failure. If the agent

chooses the safe action, then she passes with probability one, Pr(x2|a2) = 1. If the

agent chooses the risky action, then she passes with probability qω ∈ (0, 1) in state ω,

i.e. Pr(x2|a1, ω) = qω. The probability of passing when choosing the risky action is

higher in state L than in state R, qL > qR. For example, a college student decides

whether to study or go to a party. Partying is fun, but decreases the likelihood that

she passes her classes. The student is uncertain about the extent to which partying

decreases her probability of passing.

An agent derives utility from choosing the risky action and from passing. There

are two types of agents, Θ = {θ1, θ2}, and these types differ in the intensity of their

preference for the risky action. An agent of type θi receives payoff vi(a, x) = υi1a=a1 +

1x=x2 , where υi > 0 is the utility derived from the risky action. Type θ2 has a stronger

preference for the risky action, υ2 > υ1. Given the distributions over outcomes and

fixing state ω, type θi receives expected utility ui(a1, ω) = υi + qω when she chooses the

risky action and ui(a2, ω) = 1 when she chooses the safe action. Assume that the risky

action is dominant for type θ2, υ2 + qR > 1, and type θ1 prefers the risky action in state

L and the safe action in state R, υ1 + qL > 1 > υ1 + qR.

Before making a decision, an agent learns about the state by observing the outcomes

of her peers. We assume that there are no private or public signals, and agents do not

observe action choices – they learn solely from the outcome history. The distribution

of an agent’s outcomes depends on her action choice. Therefore, in order to learn from

prior outcomes, an agent needs a model of how agents before her chose their actions.

Type θ2’s model is irrelevant, as this type has a dominant action. Let π̂1(θ1) ∈ [0, 1)

denote type θ1’s belief about the frequency of type θ1, and let π(θ1) ∈ (0, 1) denote the

true frequency of type θ1 in the population. We can model type θ1’s social perception

bias as a misspecified type distribution in which the agent has a misspecified model of

others’ preferences.

Definition 7 (Social Perception Bias). Type θ1 exhibits pluralistic ignorance when

π̂1(θ1) < π(θ1), and exhibits the false consensus effect when π̂1(θ1) > π(θ1).

For example, the college student is unsure if her peers have the same preferences for

studying versus partying. She exhibits pluralist ignorance if she overestimates the likeli-

hood that others derive more pleasure from partying, and she exhibits the false consensus

effect if she overestimates the likelihood that others share her preference for partying.

Other examples include a patient who is unsure about other patients’ willingness to pay
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for health insurance or a parent who is unsure if other parents have similar preferences

for vaccinating their children.

Type θ1 also needs a model of how actions influence outcomes. To focus on social

perception biases, we assume that θ1 has a correct model of the outcome distribution

conditional on each action and state, i.e. θ1 correctly believes that the risky action

leads to the pass outcome with probability qω in state ω. Therefore, θ1’s only source of

misspecification is with respect to the type distribution.

To close the model, assume that a positive share of agents are type θ2, π(θ2) > 0,

and all types have common prior p0 = 1/2. Type θ1 has a correctly specified model

of the outcome distribution, conditional on the action and state. Therefore, trivially,

the subjective outcome distributions are aligned (Assumption 1∗).38 Only one action

(the risky action) is informative, so trivially, outcomes are aligned (Assumption 2∗).

Further, the risky action has full support over the outcome space (Assumption 5). Since

θ2 chooses an action with full support over the outcome distribution and π(θ2) > 0,

adequate information arrives to learn the state. Type θ1 believes that θ2 are present

with positive probability, π̂1(θ2) > 0, so θ1’s model is consistent (Assumption 3∗).

Action Choices and Beliefs. We focus on the learning of type θ1. Since θ2 has a

dominant action, its beliefs do not influence its action choice. Therefore, the informa-

tional content of its outcomes are independent of its beliefs and we do not need to keep

track of λ2. Therefore, λ = (λ1).

In order to learn from outcomes, an agent needs to infer the equilibrium action that

each type chooses. Type θ2 always chooses the risky action and passes with probability

qω. The optimal action of type θ1 depends on its current belief about the state. If beliefs

λ1 are such that type θ1 chooses the safe action, then it almost surely passes and the

probability of observing a pass outcome is

ψx(x2|λ1, ω) = π(θ1) + (1− π(θ1))q
ω,

where ψx denotes the analogue of ψ for outcomes, while type θ1’s subjective probability

of observing a pass outcome is

ψ̂x,1(x2|λ1, ω) = π̂1(θ1) + (1− π̂1(θ1))qω.

Therefore, if θ1 has the false consensus effect, it overestimates the probability of passing,

and if θ1 has pluralistic ignorance, it underestimates the probability of passing. If beliefs

λ1 are such that both types choose the risky action, then the true probability of passing

38These assumptions are outlined in the learning from outcomes framework in Appendix B.
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is qω for both types, ψx(x2|λ1, ω) = qω. In this case, type θ1’s subjective probability of

observing a pass outcome is correct ψ̂x,1(x2|λ1, ω) = qω.

Asymptotic Learning Characterization. We next characterize how the asymptotic

learning outcomes for type θ1 depend on its social perception bias.

First consider pluralistic ignorance. When π̂1(θ1) is less than π(θ1), type θ1 displays

a form of pluralistic ignorance in which it overestimates how many other agents have a

dominant preference for the risky action. When θ1 is almost certain that the safe action

is optimal (state R), it overestimates the share of agents choosing the risky action. This

leads it to observe outcomes that are on average better than it expects in state R, as

it attributes passes from agents choosing the safe action to passes from agents choosing

the risky action. This pushes its beliefs away from state R. In state L, this prevents

incorrect learning, while in state R, this rules out correct learning when the bias is severe

enough. In contrast, when θ1 is almost certain that the risky action is optimal (state L),

it correctly interprets outcomes, since both types choose the risky action. This allows

correct learning when the state is L and prevents incorrect learning when the state is R.

Proposition 4 summarizes this result.

Proposition 4 (Pluralistic Ignorance). Suppose π̂1(θ1) < π(θ1).

1. When ω = L, almost surely learning is correct and θ1 converges to choosing the

risky action.

2. When ω = R, there exists a cutoff πR ∈ [0, π(θ1)) such that if π̂1(θ1) < πR, then

almost surely learning is cyclical, and otherwise, almost surely learning is correct

and θ1 converges to choosing the safe action. The cutoff πR is increasing in π(θ1).

Proposition 4 shows that if the degree of pluralistic ignorance is severe enough, then

type θ1 will never learn to take the safe action when it is optimal, but it also won’t

herd on the risky action – it will choose both the safe and the risky action infinitely

often. Behavior will cycle between the two actions. When a lot of agents choose the

risky action, a high frequency of negative outcomes convinces agents that they need to

make a safer choice. But in periods when agents are choosing the safe action, agents

underestimate the negative consequences of the risky action. In contrast, θ1 will learn

to take the risky action when it is optimal.

To illustrate the intuition for this result, suppose a college student overestimates

the share of students who enjoy drinking heavily despite the risk of failing. Then she

believes many of her peers are partying, when in fact they are studying. If this student

only observes how well her peers perform in class, she will attribute the high frequency

of passes to students who drink and succeed. This causes her to believe that drinking is
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not very risky, and she will choose to drink inefficiently often in the state where drinking

does in fact significantly reduce the probability of passing. But she won’t converge to

the incorrect belief that drinking has a minor impact on the probability of passing, as

the failure rate becomes too high as beliefs approach this incorrect state.

Information programs designed to discourage risky behavior by providing information

about the outcomes of choosing a risky action, such as “just say no” programs (e.g.

DARE), will be ineffective in the presence of pluralistic ignorance. The outcomes of

agents engaging in efficient, safe behavior will be misperceived as evidence that the risky

behavior is actually safe. This prevents agents from learning the negative consequences

of high risk behaviors. When agents have pluralistic ignorance, effective interventions

require information about the choices of others, rather than information about the

outcomes of these choices.

Next consider the false consensus effect. When π̂1(θ1) is greater than π(θ1), type θ1

displays a form of the false consensus effect in which it underestimates how many other

agents have a dominant preference for the risky action. When type θ1 is almost certain

that the safe action is optimal (state R), it underestimates the frequency of the risky

action and observes a higher than anticipated failure rate. This reinforces choosing the

safe action and move beliefs towards state R. It facilitates correct learning if the state is

R, and the bias is severe enough, allows incorrect learning if the state is L. In contrast,

when θ1 is almost certain that the risky action is optimal (state L), it correctly interprets

outcomes, since both types choose the risky action. This allows correct learning when

the state is L and rules out incorrect learning when the state is R. Proposition 5 shows

that the false consensus effect can lead to both correct and incorrect learning when the

risky action is optimal. In contrast, θ1 will learn to take the safe action when it is

optimal.

Proposition 5 (False Consensus Effect). Suppose π̂1(θ1) > π(θ1).

1. When ω = R, almost surely learning is correct and θ1 converges to choosing the

safe action.

2. When ω = L, there exists a cutoff πL ∈ (π(θ1), 1) such that if π̂1(θ1) > πL, then

correct and incorrect learning arise with positive probability, and otherwise, almost

surely learning is correct and θ1 converges to choosing the risky action. The cutoff

πL is increasing in π(θ1).

This result suggests that the false consensus effect will stymie information programs

that encourage risk-taking, such as a campaign to encourage investing savings in the

stock market. As more agents start to choose the risky action, if a type does not account
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for this change, the observed higher failure rate will reinforce its choice of the safe action.

Policies that subsidize risk-taking will effectively mitigate the false consensus effect for

the agents who receive subsidies, but will have a perverse effect on the unsubsidized

agents.

6 Conclusion

We develop a general framework for social learning with model misspecification. Agents

learn from the actions or outcomes of others, and may have misspecified models of how to

interpret signals, how other agents learn, and/or other agents’ preferences. When agents

are misspecified, complete learning – where individuals eventually place probability one

on the correct state – is no longer guaranteed. Our main result characterizes how

asymptotic learning outcomes depend on the form of misspecification. We show that

asymptotic learning may be incorrect, individuals may perpetually disagree, or beliefs

may not converge at all. This characterization also establishes a robustness property:

regardless of the form of misspecification, agents almost surely learn the correct state

when they have approximately correct models.

We use this characterization to illustrate how model misspecification impacts long-

run learning in three applications: a model of strategic misspecification in which agents

use the level-k/cognitive hierarchy framework to learn from others, a model of signal

misspecification in which some agents slant information towards a favored state, and

a model of preference misspecification where agents exhibit social perception bias and

are misspecified about the preferences of other agents. These results yield new insights

about how misspecification impacts social learning, and provide a unified framework to

study forms of misspecification that have been previously studied.
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A Appendix: Proofs

A.1 Proof of Theorem 1

We establish Theorem 1 through a series of lemmas. In Lemma 1, we characterize the

set of stationary beliefs, which are candidate limit points of 〈λt〉. Lemma 2 rules out

convergence to non-stationary beliefs. Next, Lemma 3 establishes when a stationary

belief is locally stable. Lemma 4 establishes that global stability immediately follows

from local stability for agreement outcomes, while Lemma 5 establishes that maximal

accessibility is a sufficient condition for global stability of disagreement outcomes. In

Lemma 6, we show that locally stable mixed learning outcomes must be in ΛM(ω).

Therefore, if ΛM(ω) is empty, almost surely mixed learning does not arise. Finally,

Lemma 7 establishes that when there is at least one globally stable stationary outcome

and no locally stable mixed outcomes, the likelihood ratio converges almost surely for

all sociable types.

We present Lemmas 1 - 4 for an arbitrary number of sociable types k ≥ 1, as

the constructions of local stability and the global stability of agreement outcomes are

identical for k ≤ 2 and k > 2. Establishing the global stability of disagreement outcomes

and ruling out mixed learning is more involved for more than two sociable types, as the

number of possible outcomes increases with k. Therefore, we present Lemmas 5 - 7 for

k ≤ 2 types, and present the analogues for k > 2 in Appendix A.2.

Throughout this section, assume Assumptions 1, 2, 3 and 4. Given ε > 0, define a

neighborhood Bε(λ) of λ ∈ {0,∞}k as λi ∈ [0, ε) if λi = 0 and λi ∈ (1/ε,∞] if λi =∞.

A.1.1 Statement of Lemmas

In this section, we state Lemmas 1-7 outlined above. The proofs follow in Appendix

A.1.2. At a stationary belief, the likelihood ratio remains constant for any action and

signal pair that occurs with positive probability.

Definition 8 (Stationary). λ∗ ∈ [0,∞]k is stationary if for all (a, σ) ∈ A × Σ, either

(i) ψ(a, σ|ω,λ∗) = 0 or (ii) λ∗ = λ∗
(
ψ̂i(a,σ|L,λ∗)
ψ̂i(a,σ|R,λ∗)

)
for all θi ∈ ΘS.

By Assumption 3, actions and/or public signals are informative at any interior belief.

Therefore, the set of stationary beliefs correspond to each type placing probability one

on either state R (λ = 0) or state L (λ =∞).

Lemma 1 (Stationary Beliefs). The set of stationary beliefs are {0,∞}k.

Further, the likelihood ratio almost surely does not converge to non-stationary beliefs.

Lemma 2 (Non-Stationary Beliefs). If λ∗ ∈ (0,∞)k, then Pr(λt → λ∗) = 0.
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Therefore, if the likelihood ratio converges for all types, then it must converge to a

stationary belief λ∗ ∈ {0,∞}k.
Next, we determine when the likelihood ratio converges with positive probability.

Recall that λ∗ is locally stable if the process 〈λt〉 converges to λ∗ with positive probability

from a neighborhood of λ∗, and that γi(λ, ω) is the expected change in the log likelihood

ratio for type θi at belief λ. Lemma 3 establishes the relationship between the local

stability of stationary belief λ∗ and the sign of γi(λ
∗, ω).

Lemma 3 (Locally Stable Beliefs). Let λ∗ ∈ {0,∞}k be a stationary belief.

1. If γi(λ
∗, ω) < 0 for all θi ∈ ΘS such that λ∗i = 0 and γi(λ

∗, ω) > 0 for all θi ∈ ΘS

such that λ∗i =∞, then λ∗ is locally stable.

2. If there exists a θi ∈ ΘS such that λ∗i = 0 and γi(λ
∗, ω) > 0 or λ∗i = ∞ and

γi(λ
∗, ω) < 0, then λ∗ is not locally stable and Pr(λt → λ∗) = 0.

Lemma 3 uses results on the local stability of nonlinear equations developed in Smith

and Sorensen (2000) (Theorems C.1 and C.2). Given Lemma 3, the set Λ(ω) defined in

(9) is generically the set of locally stable beliefs. If there are no locally stable beliefs,

i.e. Λ(ω) is empty, then the likelihood ratio almost surely does not converge for at least

one type, as Lemma 3 rules out convergence to stationary beliefs that are not in Λ(ω),

and Lemma 2 results out convergence to non-stationary beliefs.

We are interested in determining whether convergence occurs with positive proba-

bility from any initial value of the likelihood ratio, i.e. global stability. Clearly, the

set of globally stable learning outcomes is a subset of the set of locally stable learning

outcomes. Therefore, it remains to establish when local stability implies global stability.

For agreement outcomes, λ∗ ∈ {0k,∞k}, global stability immediately follows from local

stability.

Lemma 4 (Global Stability of Agreement). For λ∗ ∈ {0k,∞k}, if λ∗ is locally stable,

then λ∗ is globally stable, i.e. for any initial belief λ1 ∈ (0,∞)k, Pr(λt → λ∗) > 0.

All types update their beliefs in the same direction following either the maximal action

and signal in favor of state L, (aM , σL), or the maximal action and signal in favor of state

R, (a1, σR). Therefore, from any initial belief, it is possible construct a finite sequence

of action and public signal pairs that occurs with positive probability and pushes the

likelihood ratio arbitrarily close to an agreement outcome. Once the likelihood ratio is

in a neighborhood of the agreement outcome, local stability establishes convergence.

Lemma 5 establishes that maximal accessibility is a sufficient condition for the global

stability of a disagreement outcome in the case of two sociable types, k = 2.39

39By definition, disagreement or mixed learning outcomes require k ≥ 2.
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Lemma 5 (Global Stability of Disagreement). Suppose k = 2. If disagreement outcome

λ∗ ∈ {(0,∞), (∞, 0)} is locally stable and maximally accessible, then λ∗ is globally stable.

Maximal accessibility orders the way each type interprets maximal actions and public

signals, which guarantees that there exists a finite sequence of maximal actions and

public signals that separates the beliefs of each type in the direction of the disagreement

outcome.40 As before, once the likelihood ratio is sufficiently close to the disagreement

outcome, local stability establishes convergence.

As discussed in Section 4.2, a sufficient condition for ruling out mixed outcomes is

that ΛM(ω) is empty.

Lemma 6 (Unstable Mixed Outcomes). Suppose k = 2. If mixed learning outcome

λ∗i 6∈ ΛM(ω), then Pr(λi,t → λ∗i and λ−i,t does not converge) = 0.

Finally, if there is at least one locally stable agreement or maximally accessible disagree-

ment outcome, and no locally stable mixed outcomes, then the likelihood ratio converges

almost surely for all types.

Lemma 7 (Belief Convergence). Suppose k = 2, Λ(ω) contains an agreement outcome

or maximally accessible disagreement outcome and ΛM(ω) is empty. Then for any initial

belief λ1 ∈ (0,∞)2, there exists a random variable λ∞ with supp(λ∞) = Λ(ω) such that

λt → λ∞ almost surely.

Theorem 1 immediately follows. Part (1) follows from the local and global stability

of agreement outcomes (Lemmas 3 and 4). Part (2) follows from the local and global

stability of disagreement outcomes (Lemmas 3 and 5). For part (3), Lemmas 1 and 2 rule

out convergence to non-stationary beliefs, Lemma 3 rules out convergence to unstable

stationary outcomes, and Lemma 6 rules out convergence to a mixed learning outcome

when ΛM(ω) is empty. Therefore, if Λ(ω) is empty, there are no locally stable learning

outcomes and almost surely the likelihood ratio does not converge for at least one sociable

type, establishing the second statement in part (3). If ΛM(ω) is also empty, then almost

surely the likelihood ratio does not converge for any sociable type, establishing the

first statement in part (3). The final statement in part (3) follows from Lemma 7,

which establishes convergence when Λ(ω) contains an agreement outcome or maximally

accessible disagreement outcome.

40While maximal accessibility is simple and easy to verify, it can be restrictive, especially in models
with large action or public signal spaces. In Lemma 9 (Appendix A.1.2), we establish a more general
sufficient condition to separate beliefs, which we call separability (Definition 9).
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A.1.2 Proofs of Lemmas 1 - 7

Proof of Lemma 1 (Stationary Beliefs). At a stationary belief λ∗ ∈ [0,∞]k,

λ∗ = λ∗

(
ψ̂i(a, σ|L,λ∗)
ψ̂i(a, σ|R,λ∗)

)
(14)

for all (a, σ) such that ψ(a, σ|ω,λ∗) > 0. Trivially, (14) is satisfied for all λ∗ ∈ {0,∞}k,
independent of ψ(a, σ|ω,λ∗). Therefore, all λ∗ ∈ {0,∞}k are stationary. It remains to

be determined whether there exist any interior stationary beliefs λ∗ ∈ (0,∞)k.

Suppose λ∗ ∈ (0,∞)k and Assumption 3.ii holds, i.e. there exists an autarkic θj

with π(θj) > 0 that plays a1 with probability in (0, 1), and each sociable type θi believes

this autarkic type occurs with positive probability, π̂i(θj) > 0. Then ψ(a1|ω,λ∗) ∈ (0, 1)

and ψ̂i(a1|ω,λ∗) ∈ (0, 1) for ω ∈ {L,R}. Further, ψ̂i(a1|L,λ∗) < ψ̂i(a1|R,λ∗), since

F̂L
i < F̂R

i when a type plays an action with an interior probability. Given ρi(σR) ≤ 1/2,

this implies ψ̂i(a1, σR|L,λ∗) < ψ̂i(a1, σR|R,λ∗) and (14) does not hold for (a1, σR). But

(a1, σR) occurs with positive probability in either state, ψ(a1, σR|ω,λ∗) > 0. Therefore,

λ∗ cannot be stationary.

Suppose λ∗ ∈ (0,∞)k and Assumption 3.i holds. Then ρi(σR) < 1/2 and ρi(σL) >

1/2 for all sociable types θi. Further, σR and σL occur with positive probability, inde-

pendent of λ. At least one action a occurs with positive probability at λ∗. Since public

signals are informative, it must be that ψ̂i(a,σL|L,λ∗)
ψ̂i(a,σL|R,λ∗)

6= ψ̂i(a,σR|L,λ∗)
ψ̂i(a,σR|R,λ∗)

. Therefore, (14) can-

not hold for both (a, σL) and (a, σR). But both action-signal pairs occur with positive

probability in either state, ψ(a, σR|ω,λ∗) > 0 and ψ(a, σL|ω,λ∗) > 0. Therefore, λ∗

cannot be stationary. �

Proof of Lemma 2 (Non-Stationary Beliefs). Suppose beliefs converge to a non-

stationary belief λ∗ ∈ [0,∞]k \ {0,∞}k with positive probability. After action and

public signal (at, σt) = (aM , σL), by Lemma 11, λi,t+1 − λi,t is bounded uniformly away

from zero for all sociable types θi ∈ ΘS. For sufficiently small ε > 0, if λt ∈ Bε(λ
∗),

then after observing (at, σt) = (aM , σL), λi,t+1 6∈ Bε(λ
∗) for any type with an interior

belief λi,t ∈ (0,∞). The probability Pr(∃t < T |(at, σt) = (aM , σL)) converges to one as

T →∞. Therefore, the likelihood ratio almost surely leaves Bε(λ
∗). �

Proof of Lemma 3 (Locally Stable Beliefs). Suppose ω = R. The proof for ω = L

is analogous.

Part 1. Consider λ∗ = 0k and suppose γi(0
k, R) < 0 for all sociable types θi ∈ ΘS.

54



Then there exists a ε > 0 such that in the neighborhood Bε(0
k) ≡ [0, ε]k of 0k,

∑
(a,σ)∈A×Σ

ψ(a, σ|R, 0k) sup
λ∈[0,ε]k

log
ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)
< 0. (15)

for all θi ∈ ΘS. Let

gi(a, σ) ≡ sup
λ∈[0,ε]k

log
ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)

denote the maximal update from action and signal (a, σ) in the neighborhood [0, ε]k,

with g(a, σ) ≡ (g1(a, σ), ..., gk(a, σ)). Let

ḡi ≡ max
(a,σ)∈A×Σ

gi(a, σ)

denote the maximal update across all action and signal pairs in the neighborhood [0, ε]k,

with g ≡ (ḡ1, ..., ḡk).

For δ > 0, choose a neighborhood [0, εδ]
k ⊆ [0, ε]k with

sup
λ∈[0,εδ]k

|ψ(a, σ|R,λ)− ψ(a, σ|R, 0k)| < δ.

By Lemma 12, ψ(a, σ|R,λ) is continuous at λ = 0k, so such a neighborhood exists.

Suppose λ1 ∈ [0, εδ]
k. Let a(θ, s,λ) be the optimal action for type θ at beliefs λ after

observing private signal s. Define the linear system 〈λδ,t〉∞t=1 as follows: λδ,1 = λ1,

logλδ,t+1 = logλδ,t + g(a(θt, st, 0
k), σt),

when (θt, st) is such that a(θt, st,λ) = a(θt, st, 0
k) for all beliefs λ ∈ [0, εδ] (note this

includes all autarkic types), and

logλδ,t+1 = logλδ,t + ḡ

otherwise. When ω = R, let ψδ(a, σ) be the probability of (a, σ) in the former event and

let ψ̄δ be the probability of the latter event. Note ψδ(a, σ) ≤ infλ∈[0,εδ]k ψ(a, σ|R,λ) and

ψ̄δ +
∑

(a,σ)∈A×Σ ψδ(a, σ|R) = 1. By Theorem C.1 of Smith and Sorensen (2000), if

ψ̄δḡi +
∑

(a,σ)∈A×Σ

ψδ(a, σ)gi(a, σ) < 0 (16)

for all θi ∈ ΘS, then limt→∞ λδ,t = 0k. Equation (16) holds for sufficiently small δ, since

by (15), it is strictly less than zero at δ = 0.
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Let δ1 > 0 denote an upper bound such that (16) holds for all δ < δ1. Whenever

(θt, st) is such that a(θt, st,λ) = a(θt, st, 0
k) for all λ ∈ [0, εδ], the process 〈logλδ,t〉

updates by g(a, σ). When λt ∈ [0, εδ]
k, by construction this is larger than the update to

the process 〈logλt〉, which is log ψ̂i(a,σ|L,λt)
ψ̂i(a,σ|R,λt)

for each type θi ∈ ΘS. Otherwise, 〈logλδ,t〉
updates by ḡ, which is also larger than the update to 〈logλt〉 when λt ∈ [0, εδ]

k. There-

fore, for δ < δ1, if λδ,t ≥ λt and λδ,t ∈ [0, εδ]
k, then λδ,t+1 ≥ λt+1. Since λδ,1 ∈ [0, εδ]

k, as

long as it remains in [0, εδ]
k, 〈λt〉 is bounded above by a stochastic process that converges

to zero almost surely.

Since limt→∞ λδ,t = 0k almost surely for δ < δ1,

Pr(∪t ∩s≥t {λδ,s ∈ [0, εδ]
k}) = 1.

Therefore, there exists a t ≥ 1 such that Pr(∀s ≥ t,λδ,s ∈ [0, εδ]
k) > 0. Since the system

is linear, if this holds at some t > 1, it must hold at t = 1. Therefore, there exists some

λδ,1 ∈ [0, εδ]
k, with positive probability, λδ,t remains in [0, εδ]

k for all t > 1 and λt ≤ λδ,t.

Moreover, this holds for all λ ≤ λδ,1. When this happens, since limt→∞ λδ,t = 0k, it must

also be that limt→∞ λt = 0k. Let ε∗ = inf λδ,i,1 This establishes that when λ1 ∈ [0, ε∗]k,

with positive probability, limt→∞ λt = 0k i.e. λ∗ = 0k is locally stable.

The proofs for the other stationary beliefs are analogous. If λ∗i =∞, substitute λ−1i
for type θi and modify the transition rules accordingly.

Part 2. Let λ∗ ∈ {0,∞}k be a stationary belief and suppose that there exists a

type, which without loss of generality we denote θ1, such that λ∗1 = 0 but γ1(λ
∗, R) >

0. Without loss of generality, suppose the types are ordered so that the first κ types

correspond to λ∗i = 0 and the latter k−κ types correspond to λ∗i =∞. Since γ1(λ
∗, R) >

0, there exists a ε > 0 such that for neighborhood Bε(λ
∗) ≡ [0, ε]κ × [1/ε,∞]k−κ of λ∗,

∑
(a,σ)∈A×Σ

ψ(a, σ|R,λ∗) inf
λ∈Bε(λ∗)

log
ψ̂1(a, σ|L,λ)

ψ̂1(a, σ|R,λ)
> 0. (17)

Let τε ≡ min{τ |λt ∈ Bε(λ
∗) ∀t ≥ τ} be the first time at which beliefs enter Bε(λ

∗)

and never exit. Suppose Pr(λt → λ∗) > 0. Then for all ε > 0, τε < ∞ with positive

probability. We will reach a contradiction by showing that for small enough ε, τε = ∞
almost surely. Let

g1(a, σ) ≡ inf
λ∈Bε(λ∗)

log
ψ̂1(a, σ|L,λ)

ψ̂1(a, σ|R,λ)

denote the minimal update for type θ1 following action and signal (a, σ) in the neigh-
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borhood Bε(λ
∗) and let

g
1
≡ min

(a,σ)∈A×Σ
g1(a, σ)

denote the minimal update across all action and signal pairs in the neighborhood Bε(λ
∗).

Suppose λτ ∈ Bε(λ
∗) for some time τ (if such a τ doesn’t exist, then clearly λt → λ∗

is not possible along such a sample path). As above, let a(θ, s,λ) be the optimal action

for type θ at beliefs λ after observing private signal s. Define a linear system 〈λ̃t〉 as

follows: let λ̃τ = λ1,τ and for t > τ ,

log λ̃t+1 = log λ̃t + g1(a(θt, st,λ
∗), σt)

when (θt, st) is such that a(θt, st,λ) = a(θt, st,λ
∗) for all beliefs λ ∈ Bε(λ

∗) (note this

includes all autarkic types), and

log λ̃t+1 = log λ̃t + g
1

otherwise. When ω = R, let ψ(a, σ) be the probability of (a, σ) in the former event and

let ψ be the probability of the latter event. Note ψ +
∑

(a,σ)∈A×Σ ψ(a, σ) = 1. Choose ε

sufficiently small so that

ψ g
1

+
∑

(a,σ)∈A×Σ

ψ(a, σ)g1(a, σ) > 0. (18)

Given (17), (18) is strictly greater than zero at ε = 0, so such an ε exists. Moreover,

(log λ̃t+1 − log λ̃t)
∞
t=τ is an i.i.d. process with expectation equal to (18). By the Law of

Large Numbers, almost surely, 1
t
(log λ̃t+1 − log λ̃t) converges to (18), which is positive.

Therefore,

lim
t→∞

log λ̃t = lim
t→∞

(
log λ1,τ +

t∑
s=τ

(log λ̃s+1 − log λ̃s)

)
→∞.

By definition of 〈λ̃t〉, if λ1,t ≥ λ̃t and λt ∈ Bε(λ
∗), then λ1,t+1 ≥ λ̃1,t+1. Since λτ ∈

Bε(λ
∗), as long as 〈λt〉 remains in Bε(λ

∗) for t > τ , 〈λ1,t〉 is bounded below by the

stochastic process 〈λ̃t〉. Therefore, if 〈λt〉 remains in Bε(λ
∗) for all t > τ

lim
t→∞

log λ1,t ≥ lim
t→∞

log λ̃t →∞.

But this implies that for small enough ε, λt 6∈ Bε(λ
∗) for some t > τ . This is a

contradiction. So it must be that for small enough ε, τε =∞ almost surely. Therefore,

Pr(λt → λ∗) = 0.
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Similar logic establishes that for stationary λ∗ such that λ∗1 =∞ and γ1(λ
∗, R) < 0,

Pr(λt → λ∗) = 0. �

Locally Stable Neighborhoods. The general definition of Λi(ω) for k ≥ 1 is

Λi(ω) ≡ {λ ∈ {0,∞}2|γi(λ, ω) < 0 if λi = 0 and γi(λ, ω) > 0 if λi =∞}, (19)

with Λ(ω) ≡ ∩ki=1Λi(ω). From Lemma 3, if λ∗ ∈ Λ(ω), then λ∗ is locally stable, i.e.

there exists an ε > 0 and a stable neighborhood Bε(λ
∗) such that when λ1 ∈ Bε(λ

∗),

Pr(λt → λ∗) > 0. Also, generically, for each stationary belief λ∗ 6∈ Λ(ω), there exists an

ε > 0 and an unstable neighborhood Bε(λ
∗) such that when λ1 ∈ Bε(λ

∗), 〈λt〉 almost

surely leaves this neighborhood.

Fix state ω and define E > 0 as the smallest constant such that if log λi ∈ R\[−E,E]

for each θi ∈ ΘS, then λ is contained in one of these stable or unstable neighborhoods,

and let BE(λ∗) denote the corresponding neighborhood for each stationary λ∗.41 Let B
denote the union of the stable neighborhoods, B ≡ ∪λ∗∈Λ(ω)BE(λ∗), and let BU denote

the union of the unstable neighborhoods, BU = ∪λ∗∈{0,∞}k\Λ(ω)BE(λ∗). We will use these

neighborhoods in the proofs of Lemmas 4 - 7.

Proof of Lemma 4 (Global Stability of Agreement). Suppose the agreement

outcome is locally stable, 0k ∈ Λ(ω), and there are at least two types, |Θ| ≥ 2. By

Assumption 4, a1 occurs with positive probability, and by Lemma 10, observing (a1, σR)

decreases the likelihood ratio. Given initial likelihood ratio λ1 ∈ (0,∞)k, let N be the

minimum number of consecutive (a1, σR) actions and signals required for the likelihood

ratio to reach the stable neighborhood, λN+1 ∈ BE(0k). By Lemma 11, the change in the

likelihood ratio following (a1, σR) is bounded away from zero. Therefore, N <∞. Let τ1

be the first time that 〈λt〉 enters BE(0k), τ1 ≡ min{t|λt ∈ BE(0k)}, let τ2 be the first that

〈λt〉 leaves BE(0k) after entering, τ2 ≡ min{t > τ1|λt 6∈ BE(0k)}, and let τ3 be the first

time the likelihood ratio enters BE(0k) and never leaves, τ3 ≡ min{τ |λt ∈ BE(0k) ∀t ≥
τ}. We know that Pr(τ1 < ∞) > 0, since the probability of transitioning from λ1

to BE(0k) is bounded below by the probability of initially observing N consecutive

(a1, σR) action and signal pairs. Also, Pr(τ2 = ∞) > 0, since by local stability, when

the likelihood ratio is in BE(0k), with positive probability, it never leaves. Therefore,

Pr(τ3 < ∞) > Pr(τ1 < ∞ ∧ τ2 = ∞) > 0. Therefore, with positive probability, the

likelihood ratio eventually enters and remains in BE(0k). By Lemma 3, if the likelihood

ratio remains in BE(0k) for all t, beliefs almost surely converge to 0k. Therefore, if

41In a slight abuse of notation, we switch from the neighborhood subscript denoting the bound
for the likelihood ratio to denoting the bound for the log likelihood ratio. This simplifies notation in
subsequent lemmas.
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0k ∈ Λ(ω), then from any initial belief λ1 ∈ (0,∞)k, Pr(λt → 0k) > 0.

Suppose the agreement outcome is locally stable, 0k ∈ Λ(ω), and there is a single

type, |Θ| = 1. Then Assumption 3.i must hold and public signals are informative. With

a single type, action a1 may occur with probability zero at some beliefs, and we need

to adapt the proof for multiple types. Let a(λ) be the lowest action that type θ1 plays

at belief λ. When there is a single type θ1, this type has a correctly specified model

of the type distribution (this must be the case when |Θ| = 1, as trivially, π̂1(θ1) = 1),

and therefore, observing a(λ) at belief λ weakly decreases the likelihood ratio (by similar

reasoning to Lemma 10). Therefore, observing (a(λ), σR) strictly decreases the likelihood

ratio, since public signals are informative. Substituting the sequence (a(λt), σR)Nt=1 for

the sequence of N consecutive (a1, σR) actions and signals, where λt is the updated belief

following (a(λt−1), σR), the remainder of the proof is the same as in the multiple types

case.

The proof for agreement outcome ∞k is analogous. �

Intermediate Results for Lemma 5. The following definitions and lemmas are

intermediate results for the proof of Lemma 5, and they hold for k ≥ 1. Order the public

signals by relative likelihood of state L, (σ1, σ2, ..., σ|Σ|) (note σ1 = σR and σ|Σ| = σL).

Order the action and signal pairs ((a1, σ1), (a2, σ1), ..., (aM , σ|Σ|)) so that pairM(l−1)+m

corresponds to action am and signal σl. Define A(λ) as the matrix of updates to the

log likelihood ratio at beliefs λ, where each row corresponds to the updates for sociable

type θi, and each column corresponds to the update following action and signal pair j,

(A(λ))ij ≡ log
ψ̂i((a, σ)j|L,λ)

ψ̂i((a, σ)j|R,λ)
. (20)

Without loss of generality, we consider disagreement outcomes that are ordered so

that the first κ ∈ {1, ..., k − 1} types have belief 0 and the remaining k − κ types have

belief∞, i.e. λ∗ = (0κ,∞k−κ). To consider other disagreement outcomes, simply reorder

the types so that this holds.

Definition 9 (Separability).

1. Given κ ∈ {1, ..., k}, stationary likelihood ratio λ∗ = (0κ,∞k−κ) is separable at

zero if there exist vectors c ∈ [0,∞)|A×Σ| and G ∈ Rk with Gi > 0 for all i ≥ κ

and Gi < 0 for all i < κ, such that A(λ∗)c = G.

2. Given κ ∈ {0, ..., k − 1}, stationary likelihood ratio λ∗ = (0κ,∞k−κ) is separable

at infinity if there exist vectors c ∈ (0,∞)|A×Σ| and G ∈ Rk with Gi > 0 for all

i > κ+ 1 and Gi < 0 for all i ≤ κ+ 1, such that A(λ∗)c = G.
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Definition 10 (Adjacently Accessible). Stationary likelihood ratio

λ∗2 ∈ {(0κ−1,∞k−κ+1), (0κ+1,∞k−κ−1)}

is adjacently accessible from stationary likelihood ratio λ∗1 = (0κ,∞k−κ) if for any ε2 > 0,

there exists an ε1 > 0 such that for any λ ∈ Bε1(λ
∗
1), there exists a τ(λ) <∞ such that

if λt = λ, then Pr(λt+τ(λ) ∈ Bε2(λ
∗
2)) > 0.

Lemma 8 (Adjacently Accessible). If λ∗1 = (0κ,∞k−κ) is separable at zero, then λ∗2 =

(0κ−1,∞k−κ+1) is adjacently accessible from λ∗1, and if λ∗1 is separable at infinity, then

λ∗2 = (0κ+1,∞k−κ−1) is adjacently accessible from λ∗1.

Proof. Let λ∗1 = (0κ,∞k−κ), λ∗2 = (0κ−1,∞k−κ+1) and suppose λ∗1 is separable at zero.

We will show that for any ε2 > 0, there exists an ε1 > 0 such that for any λ ∈ Bε1(λ
∗
1),

there exists a τ(λ) < ∞ such that if λ1 = λ, then Pr(λ1+τ(λ) ∈ Bε2(λ
∗
2)) > 0. Since

the log likelihood ratio process is linear, this also holds for any λt = λ.

For ε > 0, recall Bε(λ
∗
1) ≡ [0, ε)κ × (1/ε,∞]k−κ denotes a neighborhood of λ∗1.

Define K(ε) ≡ − log ε, and let [−∞,−K(ε))κ × (K(ε),∞]k−κ denote the corresponding

neighborhood of logλ∗1. Define

gε,i(a, σ) ≡ inf
λ∈Bε(λ∗1)

log
ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)
,

as the smallest update to the log likelihood ratio when type i ≥ κ observes (a, σ) and

has likelihood ratio in the neighborhood Bε(λ
∗
1), and

gε,i(a, σ) ≡ sup
λ∈Bε(λ∗1)

log
ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)

as the largest update to the log likelihood ratio when type i < κ observes (a, σ) and has

likelihood ratio in the neighborhood Bε(λ
∗
1). Finally, define

ḡε,κ(a, σ) ≡ sup
λ∈Bε(λ∗1)

log
ψ̂κ(a, σ|L,λ)

ψ̂κ(a, σ|R,λ)

as the largest update to the log likelihood ratio when type κ observes (a, σ) and has

likelihood ratio in the neighborhood Bε(λ
∗
1).

We construct a process that bounds 〈λt〉 as long as it remains close to λ∗1, and use

this process to show that we can separate the log likelihood ratios of types 1, ..., κ − 1

and type κ by an arbitrary amount K while the beliefs of all types remain close to λ∗1.

By separability at zero, there exist vectors c ∈ [0,∞)k and G ∈ Rk that satisfy the
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separability condition. Moreover, since the rationals are dense in the reals, there exists

vector c ∈ [0,∞)k of rational numbers and vector G ∈ Rk that satisfies the separability

condition.

Therefore, there exists an ε3 > 0 and integers ca,σ ≥ 0 for each (a, σ) ∈ A ×Σ such

that

Gi ≡
∑

(a,σ)∈A×Σ

ca,σgε3,i(a, σ), (21)

with Gi > 0 for all i ≥ κ and Gi < 0 for all i < κ. Let

Gκ ≡
∑

(a,σ)∈A×Σ

ca,σḡε3,κ(a, σ). (22)

Next we define processes ξi,t ≡
∑t−1

s=1 gε3,i(as, σs) and ξ̄κ,t ≡
∑t−1

s=1 ḡε3,κ(as, σs). Given a

sequence with ca,σ realizations of each (a, σ), at time τ1 ≡
∑
A×Σ ca,σ + 1, the process

ξi,τ1 = Gi by (21) and ξ̄κ,τ1 = Gκ by (22). For i ≥ κ, Gi > 0, and therefore, ξi,τ1 > 0,

while for i < κ, Gi < 0, and therefore, ξi,τ1 < 0. Moreover, there exists an K > 0 such

that for all i > κ, ξi,t ≥ −K for all t < τ1, and there exists a K̄ > 0 such that for

all i < κ, ξi,t < K̄ for all t < τ1. Therefore, for any K > 0, there exists an NK such

that following NK repetitions of the sequence of ca,σ realizations of each (a, σ), at time

τK ≡ NK

∑
A×Σ ca,σ + 1,

1. ξi,τK < −K for all i < κ,

2. ξi,τK > 0 for all i ≥ κ,

3. For all t < τK , ξi,t ≤ K̄ for all i < κ and ξi,t ≥ −K for all i > κ,

4. ξ̄κ,t ≤ NKGκ for all t ≤ τK , with equality at t = τK .

In summary, following NK repetitions of the sequence, the processes 〈ξi,t〉 of types i < κ

and type κ are separated by at least K, and at all t during the repetitions, the process

of type i < κ is bounded above by K̄ and the process of type i > κ is bounded below

by −K. As long as λs ∈ Bε3(λ
∗
1) for all s ≤ t, the change in the log likelihood ratio of

i < κ is bounded above by ξi,t,

log λi,t − log λi,1 ≤ ξi,t ≤ K̄,

the change in the log likelihood ratio of i = κ is bounded above by ξ̄κ,t,

log λκ,t − log λκ,1 ≤ ξ̄κ,t,
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and the change in the log likelihood ratio of i > κ is bounded below by ξi,t,

log λi,t − log λi,1 ≥ ξi,t ≥ −K.

Fix ε2 ∈ (0, ε3) and K > K̄. Choose an ε1-neighborhood of λ∗1 such that log λi,1 <

−K(ε2) −max(K̄,NKGκ) for i ≤ κ and log λi,1 > K(ε2) + K for i > κ. Note ε1 < ε2.

Suppose the initial likelihood ratio λ1 ∈ Bε1(λ
∗
1). We establish local accessibility in

three steps.

Step 1. Repeat NK realizations of the sequence of ca,σ realizations of each (a, σ) to

separate the log likelihood ratio of types i < κ and κ by K. It follows from items (3) and

(4) that λt remains in Bε2(λ
∗
1) for all t ≤ τK . Therefore, for each i and at all t ≤ τK , the

process ξi,t bounds the change in the log likelihood ratio, log λi,t−log λi,1 ≤ ξi,t. After NK

realizations of the sequence, log λi,τK < −K(ε2)−K for i < κ, and log λi,τK > K(ε2)+K

for i > κ.

Step 2. Next, push type κ’s log likelihood ratio to −K(ε3) as follows. Continue

repeating the sequence of ca,σ realizations of each (a, σ) until log λκ,t > −K(ε3). By

construction, the likelihood ratios of all types i 6= κ remain in Bε2(λ
∗
1) after every (a, σ)

in this sequence, since at any point in the sequence, log λi,t < −K(ε2) −K + K̄ for all

i < κ, and log λi,t > K(ε2) for all i > κ.

Step 3. Finally, push type κ’s log likelihood ratio from −K(ε3) to K(ε2), while

keeping the log likelihood ratio of type i < κ less than −K(ε2). Given ε2, there exists

an N2 < ∞ such that if log λκ,t ∈ [−K(ε3), K(ε2)], then following N2 realizations of

(aM , σL), log λκ,t+N2 > K(ε2). Let K2 be the most any type i < κ’s log likelihood

ratio increases after N2 realizations of (aM , σL) across all beliefs λ ∈ Bε2(λ
∗
1). Recall

that when type κ hit the boundary of −K(ε3), log λi,t < −K(ε2) − K + K̄ for all

i < κ and log λi,t > K(ε2) for i > κ. Therefore, after N2 realizations of (aM , σL),

log λi,t < −K(ε2)−K + K̄ +K2 for all i < κ and log λi,t > K(ε2) for i > κ. In order to

keep i < κ in an ε2-neighborhood of zero after N2 realizations of (aM , σL), we need to

separate beliefs by at least K = K̄ +K2. This determines the K we need to use in step

1.

Following these three steps with K = K̄+K2, the likelihood ratio is in neighborhood

Bε2(λ
∗
2). Each step required a finite number of actions and signals that occur with

positive probability. Therefore, given ε1 and ε2 defined above, for any λ ∈ Bε1(λ
∗
1),

there exists a τ(λ) <∞ such that if λ1 = λ, then Pr(λ1+τ(λ) ∈ Bε2(λ
∗
2)) > 0. The case

of λ∗1 separable at infinity is analogous. �

Definition 11 (Accessible). A belief λ∗ is accessible if for any initial belief λ1 ∈ (0,∞)k

and any ε > 0, there exists a τ <∞ such that Pr(λτ ∈ Bε(λ
∗)) > 0.
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Lemma 9 (Accessible Disagreement). Suppose k = 2. If (0, 0) is separable at zero or

(∞,∞) is separable at infinity, then disagreement outcome (0,∞) is accessible.

Proof. By Lemma 8, if (0, 0) is separable at zero, then (0,∞) is adjacently accessible

from (0, 0). Fix initial belief λ1 ∈ (0,∞)2 and choose ε2 > 0. Choose ε1 > 0 such that

for any λ ∈ Bε1((0, 0)), there exists a τ2(λ) <∞ such that if λt = λ, then Pr(λt+τ2(λ) ∈
Bε2((0,∞))) > 0. By adjacent accessibility, such an ε1 exists. By Lemma 4, there exists

a finite sequence ξ1 of N1 action and signal pairs that occurs with positive probability,

such that following ξ1, λN1+1 ∈ Bε1((0, 0)). By adjacent accessibility, there exists a

finite sequence ξ2 of N2 action and signal pairs that occurs with positive probability,

such that following sequences ξ1 and ξ2, λN1+N2+1 ∈ Bε2((0,∞)). Since these sequences

occur with positive probability, Pr(λN1+N2+1 ∈ Bε2((0,∞))) > 0, which is the definition

of accessible. The case where (∞,∞) is separable at infinity is analogous. �

Proof of Lemma 5 (Global Stability of Disagreement). Suppose k = 2, (0,∞) ∈
Λ(ω) and θ2 �(0,0) θ1. We first show that θ2 �(0,0) θ1 implies that (0, 0) is separable at

zero. Define the submatrix

Amax ≡

log ψ̂2(a1,σR|L,(0,0))
ψ̂2(a1,σR|R,(0,0))

log ψ̂2(aM ,σL|L,(0,0))
ψ̂2(aM ,σL|R,(0,0))

log ψ̂1(a1,σR|L,(0,0))
ψ̂1(a1,σR|R,(0,0))

log ψ̂1(aM ,σL|L,(0,0))
ψ̂1(aM ,σL|R,(0,0))

 .

Since θ2 �(0,0) θ1, this has a positive determinant. Therefore, there exists a c ∈ R2
+ that

solves

Amaxc =

(
1

0

)
.

By continuity, there exists a perturbation of c to c̃ ∈ R2
+ such that

Amaxc̃ =

(
G2

G1

)
,

where G1 < 0 and G2 > 0. Therefore, by Definition 9, (0, 0) is separable at zero, since

we can set values of cj to zero for the remaining action and signal pairs in matrix (20).

Therefore, by Lemma 9, (0,∞) is accessible.

We will next show that for any initial belief, Pr(λt → (0,∞)) > 0. Fix initial belief

λ1 ∈ (0,∞)2 and choose ε < e−E. By accessibility, there exists a finite sequence ξ

of N action and signal pairs that occurs with positive probability, such that following

sequences ξ, λN+1 ∈ Bε((0,∞)). From (0,∞) ∈ Λ(ω), Pr(λt → (0,∞)|ξ) > 0. There-

fore, from any initial belief λ1 ∈ (0,∞)2, Pr(λt → (0,∞)) > 0, which implies that

(0,∞) is globally stable. The case where θ2 �(∞,∞) θ1 is analogous, as is the proof for
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(∞, 0). �

Proof of Lemma 6 (Unstable Mixed Outcomes). Suppose k = 2 and consider

the mixed learning outcome λ1 = 0 in which θ1’s belief converges to zero and θ2’s belief

doesn’t converge. Suppose λ1 = 0 6∈ ΛM(ω), i.e. (0, 0) ∈ Λ2(ω) or (0,∞) ∈ Λ2(ω).

Without loss of generality, consider the case where (0, 0) ∈ Λ2(ω). Suppose the initial

belief for type θ1 is near zero, λ1,1 ∈ Bε(0) for any ε < e−E. We want to show that almost

surely, either (i) there exists a τ < ∞ such that λ1,τ 6∈ Bε(0); or (ii) 〈λt〉 converges for

both types. This will establish that almost surely, the mixed outcome does not occur.

We first characterize how the behavior of 〈λt〉 near (0, 0) and (0,∞) depends on

Λ1(ω) and Λ2(ω). Suppose (0, 0) ∈ Λ1(ω) (recall by assumption, (0, 0) ∈ Λ2(ω)). By the

construction in Lemma 3, for ε < e−E, if 〈λt〉 enters Bε(0, 0), with positive probability,

〈λt〉 converges to (0, 0). Suppose (0, 0) 6∈ Λ1(ω). By the construction in Lemma 3, for

ε < e−E, if 〈λt〉 enters Bε((0, 0)), then from any belief in Bε((0, 0)), (i) with positive

probability uniformly bounded away from zero in the starting belief, 〈λ1,t〉 exits Bε(0),

and (ii) almost surely, 〈λt〉 exits Bε((0, 0)). If (0,∞) ∈ Λ2(ω), the behavior of 〈λt〉 in a

neighborhood of (0,∞) is similar. If (0,∞) 6∈ Λ2(ω), then by the construction in Lemma

3, for ε < e−E, if 〈λt〉 enters Bε((0,∞)), then almost surely, 〈λt〉 exits Bε((0,∞)).

Let τ1 ≡ min{t|λ1,t 6∈ Bε(0)} be the first time that θ1’s belief leaves a neighborhood

of zero. Then it must be that almost surely, τ1 < ∞ or 〈λt〉 visits a neighborhood of

(0, 0) or (0,∞) infinitely often,

Pr(τ1 <∞ or λt ∈ Bε((0, 0)) ∪Bε((0,∞)) i.o.) = 1. (23)

If (0, 0) 6∈ Λ1(ω), so (0, 0) is not locally stable, then λ2 almost surely leaves Bε((0, 0)),

and Pr(τ1 <∞ or λt ∈ Bε((0,∞)) i.o.) = 1. Similarly, if (0,∞) 6∈ Λ(ω), then λ2 almost

surely leaves Bε((0,∞)), and Pr(τ1 <∞ or λt ∈ Bε((0, 0)) i.o.) = 1.

Case (i): Suppose (0, 0) ∈ Λ1(ω) or (0,∞) ∈ Λ1(ω) ∩ Λ2(ω). If 〈λt〉 enters a neigh-

borhood of a locally stable belief infinitely often, then 〈λt〉 almost surely converges for

both types. Therefore, almost surely, τ1 <∞ or 〈λt〉 converges.

Case (ii): Suppose (0, 0) 6∈ Λ1(ω) and (0,∞) ∈ Λ2(ω) \Λ1(ω). Each time 〈λt〉 enters

Bε((0, 0)) ∪ Bε((0,∞)), with positive probability uniformly bounded away from zero in

the starting belief, 〈λ1,t〉 exits Bε(0). Therefore, if 〈λt〉 enters Bε((0, 0)) ∪ Bε((0,∞))

infinitely often, 〈λ1,t〉 almost surely exits Bε(0). Therefore, almost surely τ1 <∞.

Case (iii): Suppose (0, 0) 6∈ Λ1(ω), (0,∞) 6∈ Λ2(ω). Then Pr(τ1 < ∞ or λt ∈
Bε((0, 0)) i.o.) = 1. Each time 〈λt〉 enters Bε((0, 0)), with positive probability uniformly

bounded away from zero in the starting belief, 〈λ1,t〉 exits Bε(0). Therefore, if 〈λt〉 enters

Bε((0, 0)) infinitely often, 〈λ1,t〉 almost surely exits Bε(0). Therefore, almost surely
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τ1 <∞.

The proofs for the other mixed outcomes are analogous. �

Proof of Lemma 7 (Belief Convergence). Suppose k = 2, Λ(ω) contains an agree-

ment outcome or maximally accessible disagreement outcome and ΛM(ω) is empty. Re-

call that B is the set of locally stable neighborhoods and BU is the set of locally unstable

neighborhoods. Let τ1 ≡ min{t|λt ∈ B} be the first time that the likelihood ratio enters

the set of locally stable neighborhoods. By Lemma 11, there exists a finite sequence of

actions and signals such that starting from any initial belief λ1 ∈ (0,∞)2, 〈λt〉 enters

B. This sequence occurs with positive probability. Therefore, the probability of enter-

ing B in finite time is bounded away from zero, Pr(τ1 < ∞) > 0. If 〈λt〉 enters BU ,

then by Lemma 3, 〈λt〉 almost surely leaves BU . Therefore, 〈λt〉 does not converge to a

stationary belief that is not locally stable. If 〈λt〉 enters the neighborhood of a mixed

outcome, by Lemma 6, 〈λt〉 almost surely leaves this neighborhood or converges to a

locally stable belief. Therefore, mixed learning outcomes almost surely do not arise. By

Lemma 2, 〈λt〉 does not converge to a non-stationary belief. Therefore, almost surely,

either 〈λt〉 does not converge for either type or 〈λt〉 converges to a learning outcome

in Λ(ω). Since 〈λt〉 almost surely leaves the neighborhood of any mixed or unstable

outcome, it must be that 〈λt〉 enters B infinitely often, Pr(λt ∈ B i.o.) = 1. But if 〈λt〉
enters a neighborhood of a locally stable belief infinitely often, then almost surely 〈λt〉
converges. �

A.1.3 Intermediate Results

The following three lemmas are intermediate results used to prove Lemmas 1 - 7. They

hold for any k ≥ 1.

Lemma 10. If |Θ| > 1 then for all sociable types θj,

ψ̂j(a1, σR|L,λ)

ψ̂j(a1, σR|R,λ)
< 1 and

ψ̂j(aM , σL|L,λ)

ψ̂j(aM , σL|R,λ)
> 1

at all beliefs λ ∈ [0,∞]k. Further, for any λt ∈ (0,∞)k, if (at, σt) = (aM , σL), then

λt+1 > λt, and if (at, σt) = (a1, σR), then λt+1 < λt.

If |Θ = 1| then for any likelihood ratio λ ∈ (0,∞) there exists actions a1(λ) and

aM(λ) such that

ψ̂j(a1(λ), σR|L,λ)

ψ̂j(a1(λ), σR|R,λ)
< 1 and

ψ̂j(aM , σL|L,λ)

ψ̂j(aM , σL|R,λ)
> 1
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at all beliefs λ ∈ [0,∞]k. Further, for any λt ∈ (0,∞)k, if (at, σt) = (aM , σL), then

λt+1 > λt, and if (at, σt) = (a1, σR), then λt+1 < λt.

Proof. Fix λ ∈ [0,∞]k and consider the �-minimal action played with positive proba-

bility at λ, where � is the order from Definition 2 (if |Θ| > 1 this is a1) and in a slight

abuse of notation denote this by a1. Consider how sociable type θj updates its beliefs

following a1. Since preferences are aligned, all types θi ∈ Θ choose a1 at λ for any signal

s ≤ si,1(λi), where si,1(λi) ∈ [0, 1]. Type θj believes that type θi plays a1 with proba-

bility F̂ ω
j (s̄i,1(λi)). By Lemma A.1 in Smith and Sorensen (2000), FL(s) ≤ FR(s), with

strict equality for s ∈ (0, 1). Since signals are aligned, this is also true for the subjective

beliefs, i.e. F̂L
j (s) ≤ F̂R

j (s). Therefore, F̂L
j (s̄i,1(λi)) ≤ F̂R

j (s̄i,1(λi)) for each θi. Further,

under Assumption 3.ii, at least one type θi with π̂j(θi) > 0 has si,1(λi) ∈ (0, 1) and

F̂L
j (s̄i,1(λi)) < F̂R

j (s̄i,1(λi)). Therefore, ψ̂j(a1|L,λ) < ψ̂j(a1|R,λ), since it is a convex

combination of the probability each type chooses a1. Public signals are aligned, so it

must be that ρj(σR) ≤ 1/2, as the maximal public signal in state R is either uninforma-

tive or indicative of state R. Under Assumption 3.i, ρj(σR) < 1/2. Either Assumption

3.i or 3.ii holds, so it must be that ψ̂j(a1, σR|L,λ) < ψ̂j(a1, σR|R,λ). Therefore, if

λt ∈ (0,∞)k, following (at, σt) = (a1, σR), beliefs update toward state R,

λj,t+1 = λj,t

(
ψ̂j(a1, σR|L,λt)
ψ̂j(a1, σR|R,λt)

)
< λj,t.

Similar logic holds for (aM , σL). �

Lemma 11. If |Θ| > 1 then the minimal update to the likelihood ratio following (aM , σL)

is greater than one,

inf
λ∈[0,∞]k

ψ̂i(aM , σL|L,λ)

ψ̂i(aM , σL|R,λ)
> 1

and the maximal update to the log likelihood ratio following (a1, σR) is less than one,

sup
λ∈[0,∞]k

ψ̂i(a1, σR|L,λ)

ψ̂i(a1, σR|R,λ)
< 1.

If |Θ| = 1 then there exists a function aM : (0,∞)k → A such that the minimal update

to the likelihood ratio following (aM(λ), σL) is greater than one,

inf
λ∈[0,∞]k

ψ̂i(aM(λ), σL|L,λ)

ψ̂i(aM(λ), σL|R,λ)
> 1

and there exists a function a1 : (0,∞)k → A such that the maximal update to the log
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likelihood ratio following (a1(λ), σR) is less than one,

sup
λ∈[0,∞]k

ψ̂i(a1(λ), σR|L,λ)

ψ̂i(a1(λ), σR|R,λ)
< 1.

Proof. Let a1 denote the action from Lemma 10.

log
π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = L) + π̂i(ΘS)P̂i(a1|θ ∈ ΘS, ω = L)

π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = R) + π̂i(ΘS)P̂i(a1|θ ∈ ΘS, ω = R)
.

It must be that P̂i(a1|θ, ω = L) ≤ P̂i(a1|θ, ω = R) in equilibrium, so this is bounded

above by

log
π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = L) + π̂i(ΘS)P̂i(a1|θ ∈ ΘS, ω = R)

π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = R) + π̂i(ΘS)P̂i(a1|θ ∈ ΘS, ω = R)
,

which in turn is bounded above by

log
π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = L) + π̂i(ΘS)

π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = R) + π̂i(ΘS)
≤ 0,

Since by construction P̂i(a1|θ ∈ ΘA, ω = R) ≥ P̂i(a1|θ ∈ ΘA, ω = L) for all possible a1))

with this inequality strict under assumption 3.ii. A similar construction holds for aM .

Moreover, ρi(σR) ≤ 1/2, and ρi(σR) < 1/2 if Assumption 3.i holds. Therefore, under

Assumption 3.ii

ψ̂i(a1, σR|L,λ)

ψ̂i(a1, σR|R,λ)
<
π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = L) + π̂i(ΘS)

π̂i(ΘA)P̂i(a1|θ ∈ ΘA, ω = R) + π̂i(ΘS)

ρi(σ1)

1− ρi(σR)
< 1.

�

Lemma 12 (Continuity). λ 7→ ψ(a, σ|ω,λ) and λ 7→ ψ̂i(a, σ|ω,λ) are continuous at

each stationary λ∗ ∈ {0,∞}k for all (a, σ) ∈ A×Σ and ω ∈ {L,R}.

Proof. Consider λ∗ = 0k. Each type θi ∈ ΘS has a unique optimal action at 0k, inde-

pendent of the realization of the private signal. Moreover, since no action is optimal at a

single belief, there exists an ε1 > 0 such that if the posterior belief following the private

signal is in [0, ε1)
k, each type plays this action. Let Θa denote the set of sociable types

who play a at 0k. Fix ε > 0. Let

δ1 ≡ min
a∈A

ε

max{π(ΘS \Θa), π(Θa)}
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and

δ2 ≡ min
a∈A,θi∈ΘS

ε

max{π̂i(ΘS \Θa), π̂i(Θa)}
.

and δ ≡ min{δ1, δ2}. Signals are not perfectly informative, so there exists a s̄ such that

1− F̂ ω
i (s̄) < δ and 1− F̂ ω

i (s̄) < δ for all θi ∈ ΘS and ω ∈ {L,R}. Define

ε1(δ) ≡
ε1

maxθi∈Θs ri(s̄)/(1− ri(s̄))
.

Fix an action a ∈ A and let qa denote the probability that a type is autarkic and plays

action a. If λ ∈ [0, ε1(δ)), then the probability of playing action a is bounded above by

ψ(a|ω,λ) ≤ π(Θa) + δπ(ΘS \Θa) + qa

and bounded below by

ψ(a|ω,λ) ≥ π(Θa)(1− δ) + qa.

So |ψ(a|ω,λ)−ψ(a|ω, 0k)| ≤ ε for all λ ∈ [0, ε1(δ))
k. Similarly |ψ̂i(a|ω,λ)−ψ̂i(a|ω, 0k)| ≤

ε for all λ ∈ [0, ε1(δ))
k and θi ∈ ΘS. The public signal distribution is independent of λ.

Therefore, this continuity extends to ψ(a, σ|ω,λ) and ψ̂i(a, σ|ω,λ) for all θi ∈ ΘS. The

proof for other stationary beliefs is identical. �

A.2 Analogue of Theorem 1 for k > 2.

This section proves the analogue of Theorem 1 for more than two sociable types, k > 2.

The statement of the result is identical to Theorem 1, using the modified definitions

of Λ(ω) (defined in (19)), ΛM(ω) and maximal accessibility (defined for k > 2 below).

Recall that Lemmas 1 - 4 hold for all k ≥ 1. Therefore, we prove analogues of Lemmas

5 - 7.

Global Stability of Disagreement. As above, without loss of generality, order a

disagreement outcome so that the first κ types have belief zero, and the remaining k−κ
types have belief infinity, i.e. λ = (0κ,∞k−κ). As in the case of two sociable types, we

can use the maximal action and signal pairs to define a sufficient condition for global

stability, and use this to prove an analogue of Lemma 5.

Definition 6′ (Maximal Accessibility). Disagreement outcome (0κ,∞k−κ) is maximally

accessible if either:

(i) for all κ′ = 0, ..., κ − 1, given λ = (0κ
′
,∞k−κ′), θi �λ θκ′+1 for all i > κ′ + 1 and

θκ′+1 �λ θi for all i < κ′ + 1;

(ii) for all κ′ = κ+1, ..., k, given λ = (0κ
′
,∞k−κ′), θi �λ θκ′ for all i > κ′ and θκ′ �λ θi

for all i < κ′,
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where �λ is the maximal L-order defined in Definition 5.

Note that this definition is equivalent to Definition 6 when k = 2. If the belief of the type

with λ∗i = 0 that interprets maximal action and signal pairs as the weakest evidence of

state R decreases at a faster rate than the belief of the type with λ∗j =∞ that interprets

maximal action and signal pairs as the strongest evidence of state R, then it is possible

to find a finite sequence of maximal action and public signal pairs that separate beliefs.

Once again, this condition is straightforward to verify from the primitives of the model.

As in the case of k = 2, for any disagreement outcome in Λ(ω), maximal accessibility

is a sufficient condition for global stability. Given this revised definition of maximal

accessibility, the statement of Lemma 5 is identical.42

Lemma 5′ (Global Stability of Disagreement). If disagreement outcome λ∗ = (0κ,∞k−κ)

is locally stable and maximally accessible, then λ∗ is globally stable.

Mixed Learning Outcomes. Consider the mixed outcome in which beliefs converge

to λ∗I ∈ {0,∞}|I| for some subset of sociable types I ⊂ ΘS, where λ∗I denotes the

likelihood ratio vector restricted to set I, and beliefs do not converge for the remaining

sociable types N ≡ ΘS \ I. This outcome is not locally stable if it is possible for the

beliefs of the non-convergent types to converge. For example, suppose there are three

sociable types. If (0, 0, 0) ∈ Λ1(ω), then the mixed learning outcome in which θ1 has

cyclical learning, and θ2 and θ3 have correct learning is not locally stable, since if the

beliefs of θ2 and θ3 converge to zero, then the beliefs of θ1 will also almost surely converge

to zero. For mixed learning outcomes in which two or more types have cyclical learning,

the argument is more involved. To rule out mixed learning, we also need to show that

a locally stable outcome for the non-convergent types is accessible from other points in

the mixed outcome belief space. For example, if (0, 0, 0) ∈ Λ1(ω) ∩ Λ2(ω), then to rule

out the mixed learning outcome in which θ1 and θ2 have cyclical learning and θ3 has

correct learning, we need to show that for λ ∈ {(0,∞, 0), (∞, 0, 0), (∞,∞, 0)}, either (i)

beliefs will almost surely enter a neighborhood of (0, 0, 0) from a neighborhood of λ, or

(ii) λ ∈ Λ1(ω) ∩ Λ2(ω). The following definition formalizes this notion.

Definition 12 (Mixed Accessible). Given mixed outcome λ∗I for I ⊂ ΘS and N = ΘS\I,

λ′N is mixed accessible from λN if λ′N 6= λN and (λ∗I ,λN) 6∈ Λi(ω) for each i ∈ N such

that λ′i 6= λi, and λ′N is strongly mixed accessible from λN if λ′N is mixed accessible

from λN and for each distinct i, j ∈ N with λi 6= λ′i and λj 6= λ′j, then λi = λj.

42The proof of Lemma 5′ shows that Definition 6′ is sufficient for a much weaker, but more com-
plicated to verify, condition called separability (Definition 9) that utilizes the entire set of actions to
separate beliefs.
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Given mixed outcome λ∗I , we construct a graph G(λ∗I) between the nodes λN ∈ {0,∞}|N |

to represent which nodes λN are mixed accessible from other nodes λ′N for the non-

convergent types.

Definition 13 (Accessible Graph). Given λ∗I , define the directed graph G(λ∗I) with nodes

λN ∈ {0,∞}|N | as: there is an edge from λN to λ′N iff λ′N is strongly mixed accessible

from λN .

A terminal node λN is a node with no edges leaving it.

Definition 14 (Reducible). A mixed outcome λ∗I is reducible if G(λ∗I) has no cycles.

If a mixed outcome is reducible, then conditional on the convergent types I remaining

in a neighborhood of λ∗I , almost surely, the beliefs of the non-convergent types converge.

This is a contradiction. Therefore, almost surely, this mixed outcome will not arise. Let

ΛM(ω) denote the set of mixed learning outcomes that are not reducible,

ΛM(ω) ≡ {λ∗I ∈ {0,∞}|I|, I ⊂ ΘS|λ∗I is not reducible}. (24)

As in the case of two sociable types, if a mixed learning outcome arises with positive

probability, it must be in ΛM(ω).

Reducibility is always satisfied in some important cases and is relatively straightfor-

ward to verify. For instance, it is satisfied in models near the correctly specified model, in

which γi(λ, ω) < 0 at all stationary λ ∈ {0,∞}k for all sociable types θi. In this model,

each node in the graph is connected to all nodes with fewer∞’s than it, and is connected

to no other nodes. Therefore, every path in the graph terminates at λN = 0|N |. This

is a convergent point for mixed outcome λ∗I = 0|I|. Otherwise, it is a point at which λi

moves towards zero in expectation for all i ∈ ΘS, so therefore, some i ∈ I’s beliefs must

eventually exit a neighborhood of (λ∗I , 0
|N |).43

Given the modified definition of ΛM(ω), the statement of Lemma 6 is identical.

Lemma 6′ (Unstable Mixed Outcomes). Given I ⊂ ΘS and N = ΘS \ I, if mixed

learning outcome λ∗I 6∈ ΛM(ω), then Pr(λI,t → λ∗I and λN,t does not converge) = 0.

Belief Convergence. Finally, if there is at least one globally stable agreement or

maximally accessible disagreement outcome, and no locally stable mixed outcomes, then

the likelihood ratio converges almost surely for all types. Given the modified definitions

of Λ(ω), ΛM(ω) and maximal accessibility, the statement of Lemma 7 is identical.

43An alternative condition involves bounding γi(λ, ω) across the belief space for i ∈ N can also be
used to rule out mixed learning.
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Lemma 7′ (Belief Convergence). Suppose Λ(ω) contains an agreement outcome or max-

imally accessible disagreement outcome and ΛM(ω) is empty. Then for any initial belief

λ1 ∈ (0,∞)k, there exists a random variable λ∞ with supp(λ∞) = Λ(ω) such that

λt → λ∞ almost surely.

A.2.1 Proofs of Lemmas 5′ - 7′.

We first state an intermediate result, and then prove Lemma 5′. Using the definition of

accessible (Definition 11), the analogue of Lemma 9 for k > 2 is as follows.

Lemma 9′ (Accessible Disagreement). Disagreement outcome λ∗J = (0κ,∞k−κ) is ac-

cessible if there exists a sequence of stationary likelihood ratios λ∗1,λ
∗
2 . . .λ

∗
J , with λ∗1 ∈

{0k,∞k} and λ∗j adjacently accessible from λ∗j−1 for j = 2, ..., J .

Proof. The proof follows almost directly from Lemma 8. Each element of the sequence

λ∗j is adjacently accessible from the previous element of the sequence λ∗j−1. Starting with

λ∗J and any εJ > 0, there exists an εJ−1 > 0 and τJ <∞ such that if λt ∈ BεJ−1
(λ∗J−1),

then Pr(λt+τJ ∈ BεJ (λ∗J)) > 0. Iterating back to λ∗1, for any εJ > 0, there exists an

ε1 > 0 and τ2 < ∞ such that if λt ∈ Bε1(λ
∗
1), then Pr(λt+∑J

j=2 τj
∈ BεJ (λ∗J)) > 0.

Consider agreement outcome λ∗1 ∈ {0k,∞k}. By Lemma 4, for any initial belief λ1 ∈
(0,∞)k and any ε1 > 0, there exists a finite sequence of τ1 actions and public signals

such that following this sequence, λτ1+1 ∈ Bε1(λ
∗
1). Therefore, from any initial beliefs,

Pr(λτ1+1 ∈ Bε1(λ
∗
1)) > 0. Therefore, for any εJ > 0 and initial beliefs λ1 ∈ (0,∞)k,

Pr(λτ ∈ BεJ (λ∗J)) > 0, where τ ≡
∑J

j=1 τj + 1. Since each τj <∞, τ <∞. �

Proof of Lemma 5′. Consider λ∗ = (0κ,∞k−κ). Suppose λ∗ ∈ Λ(ω) and λ∗ is maxi-

mally accessible. Consider the sequence of stationary likelihood ratios λ∗j = (0k−j+1,∞j−1)

for j = 1, . . . k − κ + 1, and suppose part (ii) of Definition 6′ holds. We first show that

this implies separability at zero (Definition 9) for each likelihood ratio in the sequence.

For each j = 1, . . . k − κ+ 1, define the submatrix

Aj ≡

log
ψ̂k−j+1(a1,σR|L,λ∗j )
ψ̂k−j+1(a1,σR|R,λ∗j )

log
ψ̂k−j+1(aM ,σL|L,λ∗j )
ψ̂k−j+1(aM ,σL|R,λ∗j )

log
ψ̂k−j(a1,σR|L,λ∗j )
ψ̂k−j(a1,σR|R,λ∗j )

log
ψ̂k−j(aM ,σL|L,λ∗j )
ψ̂k−j(aM ,σL|R,λ∗j )

 .

Since θk−j+1 � θk−j, this has a positive determinant. Therefore, there exists a c ∈ R2
+

that solves

Ajc =

(
1

0

)
.
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By continuity, there exists a perturbation of c to c̃ ∈ R2
+ such that

Aj c̃ =

(
Gk−j+1

Gk−j

)
,

where Gk−j+1 > 0 and Gk−j < 0. Moreover, by maximal accessibility, for any j′ >

k − j + 1, (
log

ψ̂j′(aM , σL|L,λ∗j)
ψ̂j′(aM , σL|R,λ∗j)

, log
ψ̂j′(a1, σR|L,λ∗j)
ψ̂j′(a1, σR|R,λ∗j)

)
· c̃ > 0

and for any j′ < k − j,(
log

ψ̂j′(aM , σL|L,λ∗j)
ψ̂j′(aM , σL|R,λ∗j)

, log
ψ̂j′(a1, σR|L,λ∗j)
ψ̂j′(a1, σR|R,λ∗j)

)
· c̃ < 0.

Therefore, λ∗j is separable at zero, since we can set the elements of c to zero for the

remaining action and signal pairs in matrix (20). Therefore, by Lemma 8, λ∗j+1 is

adjacently accessible from λ∗j . Since this holds for each element of the sequence, starting

at λ∗1 = 0k and ending at λ∗J = λ∗, by Lemma 9′, λ∗ is accessible. Similar to the proof

of Lemma 9, we can choose ε < e−E, so that the likelihood ratio reaches the locally

stable neighborhood of λ∗ with positive probability. From here, local stability implies

that P (λt → λ∗) > 0. The case where part (i) of Definition 6′ holds is analogous. �

We first state an intermediate result, then prove Lemma 6′.

Lemma 13. Given mixed outcome λ∗I and G(λ∗I), if λN is a terminal node, then

(λ∗I ,λN) ∈ ∩i∈NΛi(ω).

Proof. Let λN be a terminal node in G(λ∗I). By definition of terminal node, no nodes are

strongly mixed accessible from λN . If any node is mixed accessible from λN , then there

exists an i ∈ N such that (λ∗I ,λN) 6∈ Λi(ω). Then the node λ′N where λ′j = λj for all

j 6= i is strongly mixed accessible, so λN is not a terminal node. This is a contradiction.

Therefore, if λN is a terminal node, then no nodes λ′N are mixed accessible from λN .

Therefore, by definition of mixed accessibility, (λ∗I ,λN) ∈ ∩i∈NΛi(ω). �

Proof of Lemma 6′. Suppose mixed outcome λ∗I is reducible, i.e. λ∗I 6∈ ΛM(ω). We

will show that this implies that λ∗I almost surely does not occur. Fix ε < e−E and

suppose λI,1 ∈ Bε(λ
∗
I). We will show that almost surely, either (i) there exists a time

τ <∞ such that λI,τ 6∈ Bε(λ
∗
I) or (ii) 〈λt〉 converges for all sociable types.

By reducibility, at every λN ∈ {0,∞}|N |, either (λ∗I ,λN) ∈ ∩i∈NΛi(ω) or there

exists a λ′N ∈ {0,∞}|N | that is strongly mixed accessible from λN such that (λ∗I ,λ
′
N) ∈
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∩i∈NΛi(ω). First consider λN ∈ {0,∞}|N | such that (λ∗I ,λN) ∈ ∩i∈NΛi(ω). By the

construction in Lemma 3, if beliefs enter Bε((λ
∗
I ,λN)), then 〈λN,t〉 is bounded above by

a process that converges to λN with positive probability, and this probability is uniformly

bounded away from zero for any belief in Bε((λ
∗
I ,λN)). If (λ∗I ,λN) ∈ ∩i∈IΛi(ω), then

(λ∗I ,λN) is locally stable, so with positive probably, λt → (λ∗I ,λN). Otherwise, if

(λ∗I ,λN) 6∈ ∩i∈IΛi(ω), then for some i ∈ I, 〈λi,t〉 is bounded below by a process that

almost surely leaves Bε(λ
∗
I). Therefore, in the event that 〈λN,t〉 → λN , 〈λI,t〉 almost

surely leaves Bε(λ
∗
I).

Next consider λN ∈ {0,∞}|N | such that (λ∗I ,λN) 6∈ ∩i∈NΛi(ω). Fix 0 < ε′ < e−E.

We want to show that there exists a ε2 > 0 such that if initial belief λN,1 ∈ Bε2(λN), then

there exists a λ′N that is strongly mixed accessible from λN such that with probability

uniformly bounded away from zero in initial belief λN,1, beliefs enter a neighborhood

Bε′(λ
′
N). Given (λ∗I ,λN), let λi denote the component for type i ∈ N and λ∗i denote

the component for type i ∈ I. By the construction in Lemma 3, there exists an i ∈ N
such that 〈λi,t〉 is bounded below by a process that almost surely leaves Bε(λi). Let NU

be the set of types i ∈ N such that (λ∗I ,λN) 6∈ Λi(ω), with NU,0 the set of i ∈ NU such

that λi = 0 and NU,∞ the set of i ∈ NU such that λi =∞. We now argue that starting

from a neighborhood Bε2(λN) for i ∈ N and Bε(λ
∗
I) for i ∈ I, with positive probability,

either 〈λI,t〉 leaves Bε(λ
∗
I) or 〈λN,t〉 reaches Bε′(λ

′
N) for some strongly mixed accessible

point λ′N . For i ∈ NU,0, let Ni be the minimum number of (aM , σL) actions it takes for

any λi,t ∈ [ε′, 1/ε′] to hit 1/ε′. Similarly, for i ∈ NU,∞, let Ni be the minimum number of

(a1, σR) actions it takes for any λi,t ∈ [ε′, 1/ε′] to hit ε′. By the construction in Lemma

3, there exists an ε2 > 0 such that if λN,1 ∈ Bε2/2(λN), with positive probability there

exists a finite t such that λN\NU ,t ∈ Bε2(λN\NU ), and λNU ,t 6∈ Bε′(λNU ).

Choose ε2 such that if λN\NU ,1 ∈ Bε2(λN\NU ), then after
∑

i∈NU,0 Ni action and

signal realizations (aM , σL), λi,t ∈ Bε′(λi) for all i ∈ N \ NU,0, and after
∑

i∈NU,∞ Ni

action and signal realizations (aR, σR), λi,t ∈ Bε′(λi) for all i ∈ N \ NU,∞. Therefore,

if λN,1 ∈ Bε2/2(λN) and λI,1 ∈ Bε(λ
∗
I), then with positive probability either (i) there

exists a t < ∞ such that λI,t 6∈ Bε(λ
∗
I), or (ii) there exists t < ∞ such that for some

i ∈ NU , λi,t 6∈ Bε′(λi) and for all i ∈ N \ NU , λi,t ∈ Bε2(λi). First consider case

(ii) and suppose that a type i ∈ NU,0 leaves. After Ni actions and signals (aM , σL),

if λN,t ∈ Bε′(λ
′
N) for some λ′N that is strongly mixed accessible from λN , then stop.

Otherwise, there exists an i2 ∈ NU,0 such that λi2,t 6∈ Bε′(λi2). Repeat Ni2 realizations

(aM , σL). After these Ni1 + Ni2 realizations of (aM , σL), if λN,t ∈ Bε′(λ
′
N) for some λ′N

that is strongly mixed accessible from λN , then stop. Otherwise, there is an i3 ∈ Nλ,0

such that λi3,t 6∈ Bε′(λi3). Repeat Ni3 realizations (aM , σL), and so on. Therefore, after

at most
∑

i∈NU,0 Ni realizations of (aM , σL), beliefs have entered the ε′ ball around some
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other stationary point (λ∗I ,λ
′
N) such that λ′N is strongly mixed accessible from λN .

Therefore, the probability of either 〈λN,t〉 reaching a neighborhood Bε′(λ
′
N) of some λ′N

that is strongly mixed accessible from λN or 〈λI,t〉 leaving the neighborhood Bε(λ
∗
I) is

bounded below by the probability of
∑

i∈NU,0 Ni realizations of (aM , σL), which is strictly

positive. The argument for a type i ∈ NU,∞ is analogous.

Consider the graph G(λ∗I). We will choose an ε(λN) to correspond to each node λN .

At any terminal node λN , define ε(λN) = ε. For any node λ′N that only has edges

going to terminal nodes, by the above construction, there exists an ε(λ′N) such that if

λN,t ∈ Bε(λ′N )(λ
′
N), then with positive probability, either 〈λN,t〉 reaches Bε(λN )(λN) for

terminal node λN or 〈λI,t〉 exits Bε(λ
∗
I). Repeat this process for each node in the graph.

Let τ1 = min{t|λI,t 6∈ Bε(λ
∗
I)}. Then almost surely, τ1 < ∞ or 〈λN,t〉 enters the

neighborhood of a node on the graph constructed above infinitely often,

Pr(τ1 <∞ or for some λN ∈ {0,∞}|N |, λN,t ∈ Bε(λN )(λN) i.o.).

If 〈λN,t〉 enters the neighborhood of a terminal node λN infinitely often, then λN ∈
∩i∈NΛi(ω), so either λN,t → λN or 〈λI,t〉 leaves Bε(λ

∗
I). Otherwise. 〈λN,t〉 enters the

neighborhood of some λ′N that is strongly mixed accessible infinitely often. Since any

path of this form ends at a terminal node, this implies that almost surely, either 〈λN,t〉
converges or 〈λI,t〉 leaves Bε(λ

∗
I). Therefore, the mixed outcome λ∗I almost surely does

not arise. �

Proof of Lemma 7′. Suppose Λ(ω) contains an agreement vector or maximally ac-

cessible disagreement vector and ΛM(ω) is empty. Recall that B is the set of lo-

cally stable neighborhoods and BU is the set of locally unstable neighborhoods. Let

τ1 ≡ min{t|λt ∈ B} be the first time that the likelihood ratio enters the set of locally

stable neighborhoods. By Lemma 11, there exists a finite sequence of actions and sig-

nals such that starting from any initial belief λ1 ∈ (0,∞)k, 〈λt〉 enters B. This sequence

occurs with positive probability. Therefore, the probability of entering B in finite time

is bounded away from zero, Pr(τ1 <∞) > 0. If 〈λt〉 enters BU , then by Lemma 3, 〈λt〉
almost surely leaves BU . If 〈λt〉 enters the neighborhood of a mixed outcome λI , by

Lemma 6′, 〈λt〉 almost surely leaves this neighborhood or converges to a locally stable

point. By Lemma 2, 〈λt〉 does not converge to a non-stationary belief. Therefore, almost

surely, either 〈λt〉 does not converge for all types or 〈λt〉 converges to a learning outcome

in Λ(ω).

Suppose with positive probability 〈λt〉 exits and never re-enters the interior of the

belief space, [e−E, eE]k. Then either 〈λt〉 enters the neighborhood of each mixed outcome

where |I| = 1 infinitely often, in which case with probability one they visit a locally stable
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set, or there exists some i such that λi is constant across all neighborhoods that 〈λt〉
enters. But then 〈λt〉 is in the neighborhood of the mixed outcome λi, and by Lemma

6′, almost surely, 〈λt〉 must leave this neighborhood or converge to a locally stable point.

So almost surely, beliefs either return to [e−E, eE]k or converge to a locally stable point.

Let τ2 ≡ min{τ |λt ∈ B ∀t > τ} be the time at which 〈λt〉 enters B and never

leaves. From Lemma 3, Pr(λt → λ∞|τ2 <∞) = 1, where λ∞ is a random variable with

supp(λ∞) ⊂ Λ(ω). Suppose τ2 =∞. Then it must be that 〈λt〉 enters B infinitely often,

Pr(λt ∈ B i.o.) = 1. But if 〈λt〉 enters a neighborhood of a locally stable belief infinitely

often, then almost surely, 〈λt〉 converges. This is a contradiction, as we supposed τ2 =∞.

Therefore, Pr(τ2 < ∞) = 1. This implies Pr(λt → λ∞) = 1, where λ∞ is a random

variable with supp(λ∞) ⊂ Λ(ω). �

A.3 Proof of Theorem 2

Suppose ω = R and suppose the mixed outcome λ2 = 0 ∈ ΛM . As in the proof of Lemma

3, we can construct neighborhoods (0, e−E]2 and [eE,∞)× (0, e−E] such that in each of

these neighborhoods, there exists an i.i.d. process that bounds θ1’s updates above as

long as beliefs remain in the neighborhood and almost surely converges to zero, and a

process that bounds θ2’s updates below (above) in the nbhd of 0 (∞) and eventually

leaves the nbhd.

Consider the interior of the belief space, [e−E, eE]2. This space can be partitioned

into finitely many closed, convex sets D1, D2, . . . DN where γ2(·, R) is continuous on the

interior of these sets. Consider the set Dj and define the function γ̂Dj : Dj → R as

γ̂i,Dj(λ) ≡

γ2(λ, R) if λ ∈ interior of Dj

limx→λ γ2(x,R) otherwise.

This is a continuous function. So, for each (λ, 0) ∈ Dj, we can construct an open, convex

set B(λ, 0) such that if λt is in this set, then log λ2,t+1 − log λ2,t is bounded above by

gj(a, σ) ≡ sup
λ∈B(λ,0)

log
ψ̂2(a, σ|L,λ)

ψ̂2(a, σ|R,λ)
.

Let

ḡj ≡ max
(a,σ)∈A×Σ

gj(a, σ).

Define the process

ξDj ,t+1 = ξDj ,t + gj(a(θt, st, (λ, 0)), σt),

when (θt, st) is such that a(θt, st,λ) = a(θt, st, (λ, 0)) for all beliefs λ ∈ Dj (note this
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includes all autarkic types), and

ξDj ,t+1 = ξDj ,t + ḡj

otherwise. When ω = R, let ψj(a, σ) be the probability of (a, σ) in the former event

and let ψ̄j be the probability of the latter event. By construction, log λ2,t+1 − log λ2,t <

ξDj ,t+1 − ξDj ,t if λt ∈ Dj. Moreover, choose Dj sufficiently small so that

ψ̄j ḡj +
∑

(a,σ)∈A×Σ

ψj(a, σ)gj(a, σ) < 0. (25)

As in Lemma 3, this sequence converges to −∞ almost surely. But now the process that

bounds the updates changes as the likelihood ratio moves across the state space even if

λ2 stays in a neighborhood of 0, so this is insufficient to conclude that λ2 converges.

By compactness, we can find a finite collection of open sets BDj ,1 . . . BDj ,n that

contain all (λ, 0) ∈ Dj. Since this procedure can be done for each Dj, there exists a

disjoint, finite collection of sets C = (Cj)
N
i=1 and an ε > 0 such that these sets contain each

point λ ∈ [e−E, eE]×[0, ε], each set is contained in exactly one BDj ,j for some i and j, and

each discontinuity point λ is contained in a subset of the Dj where γ2(λ, R) = γ̂Dj(λ).

Within each set in this cover, log λ2,t − log λ2,1 is bounded above by an i.i.d. process

ξCj ,t − ξCj ,t−1, and with positive probability, supCj E(ξCj ,t − ξCj ,t−1) < 0. It remains

to show that with positive probability, λ2 remains below ε and converges. For each

Cj, there exists a sequence of actions and public signals such that ξCj → −∞ and

sup ξt < log ε/2N . Let Nj be the set of realizations of the process (ξCj ,t − ξCj ,t−1)∞t=1 for

set Cj. Let ΞT
j be the set of these sequences truncated after the first T terms.

Let τj,k be the kth time the λ process enters Cj, and let τj,0 = 0 and ξCj ,0 = 0. Let n

be the n that satisfies where τj,n ≤ t and τj,n+1 > t if it exists. Let At be the event that

for all Cj, the sequence NT
j = ((ξCj ,τj,k+1 − ξj,τj,k))nk=1 is in Ξ

τj,n
j for each j. Elements in

this sequence bound the change in the log-likelihood ratio above at each time τj,k when

the likelihood ratio is in set Cj. Finally let Pj,NT
j

be the probability that the process

realization of the process ξCj ,s s ≥ T satisfies (NT
j , (ξCj ,s+1− ξCj ,s)∞s=T )) ∈ Ξj, and let Pj
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be the probability that (ξCj ,s+1− ξCj ,s)∞s=T ∈ Ξj. Let ct be the set C that λt is in. Then

Pr(A2|c1) = Pr(A1|c1)Pr(A2|A1, c1)

= Pr(A1|c1)E(Pr(A2|ξc1,1, A1, c1)|A1, c1)

= Pr(A1|c1)E[Pr(c1 6= c2|c1, A1, ξc1,1)Pr(A2|c1, A1, ξc1,1, c1 6= c2)

+ Pr(c1 = c2|c1, A1, ξ1)Pr(A2|c1, A1, ξc1,1, c1 = c2)|A1, c1]

≥ Pr(A1|c1)E[Pr(c1 6= c2|c1)∑
c 6=c1

Pr(c|c1, A1, ξc1 , c 6= c1)Pc + Pr(c1 = c2|c1, A1, ξc1)Pc1,N2
c
|A1, c1]

≥ Pr(A1|c1)E(Pc1,N2
c

∏
c6=c1

Pc,1|A1, c1) =
N∏
j=1

Pj > 0

where the first inequality follows from the fact that at time t, given the current neigh-

borhood beliefs are in c, the probability that the next realization is consistent with the

desired sequence is at least the probability that all subsequent realizations of ξ are in

that sequence. Now suppose we start at time t, and condition on the current set and

the past realizations of the sequences. Then

Pr(At+1|(N t
j )
n
j=1, ct) = Pr(At|(N t

j )
N
j=1, ct)Pr(At+1|At, (N t

j )
N
j=1, ct)

= Pr(At|N t
j )
n
j=1, ct)E[Pr(ct 6= ct+1|(N t+1

j )Nj=1, ct, At)

∗Pr(At+1|(N t+1
j )Nj=1, ct, At, ct 6= ct+1)

+ Pr(ct = ct+1|(N t+1
j )Nj=1, ct, At)

∗Pr(At+1|(N t+1
j )Nj=1, ct, At, ct = ct+1)|At, ct, (N t

j )
N
j=1]

≥ Pr(At|(Nc)
N
j=1, ct)E(Pct,Nt+1

ct

∏
j 6=ct

Pj,Nt
j
|At, ct, (N t

j )
N
j=1)

=
N∏
j=1

Pj,Nt
j
,

where the inequality follows from similar logic to the previous case. Conditional on

knowing the current set ct and the previous realizations of the sequence when λt was in

ct, the current realization being consistent does not depend on anything else. Moreover,

the current realization being consistent is bounded below by the probability that all
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future realizations are consistent. Finally

Pr(At+1) = E(Pr(At+1|(N t
j )
N
j=1ct)) ≥ E(ΠN

j=1Pj,Nt
j
)

= E(E(ΠN
j=1Pj,Nt

j
|(N t−1

j )Nj=1, ct−1))

= E(Pj,Nt−1
j

) . . .
n∏
j=1

Pj > 0.

Therefore, limT→∞ P (AT ) > 0. By the dominated convergence theorem, limT→∞ Pr(AT ) =

Pr(A). Moreover, at any time T , if the event AT has occurred and λ2,1 < ε/2, the like-

lihood ratio updates are bounded above by

log λ2,T − log λ2,1 ≤
T−1∑
t=1

(ξct,t+1 − ξct,t) < Nε/2N = ε/2.

So λ2 never leaves the ε-ball.

Finally, since the mixed outcome λ2 = 0 ∈ ΛM , beliefs cannot converge to (0, 0) or

(∞, 0). Otherwise, beliefs would eventually enter either (0, e−E]2 or [eE,∞) × (0, e−E]

and never leave. But there exists a process that bounds type θ1’s belief updates below

and leaves the neighborhood almost surely, which is a contradiction. Therefore, the

mixed outcome occurs with positive probability. �

A.4 Proofs of Theorems 3, 4 and 5 (Robustness)

Proof of Theorem 3. Assume Assumptions 1, 2, 3 and 4 and suppose ω = R. For

any sociable type θi ∈ ΘS, the mapping ψ̂i(a, σ|R,λ) 7→ γi(λ, R) is continuous. By the

concavity of the log operator, γi(λ, R) is negative when ||ψ̂i(a, σ|R,λ)−ψ(a, σ|R,λ)|| =
0. Therefore, there exists a δ > 0 such that if ||ψ̂i(a, σ|R,λ) − ψ(a, σ|R,λ)|| < δ for

(a, σ,λ) ∈ A × Σ × {0,∞}k and θi ∈ ΘS, then γi(λ, R) < 0 for all λ ∈ {0,∞}k and

θi ∈ ΘS. Therefore, any locally stable point must have λi = 0 for each sociable type.

Therefore, 0k is the unique locally stable point.

We also need to show that ΛM(R) is empty, i.e. all mixed outcomes are reducible.

Consider the mixed outcome λ∗I with convergent types I and non-convergent types N ≡
ΘS \ I. For any node λN in the graph G(λ∗I) (as defined in Definition 13), it follows

from the choice of δ that for each i ∈ N , (λ∗I ,λN) ∈ Λi(R) iff λi = 0. Therefore, each

λ′N that is mixed accessible from λN has fewer i ∈ N with λ′i = 0. Therefore, each path

terminates at 0|N | and the graph has no cycles, i.e. λ∗I is reducible. Therefore, ΛM(R)

is empty. By Theorem 1, if Λ(R) = {0k} and ΛM(R) is empty, then the likelihood ratio

almost surely converges to 0k and learning is complete.

Similar logic holds for ω = L. �
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Proof of Theorem 4. Assume Assumptions 1, 2, 3 and 4, and fix state ω. For any

sociable type θi, the mapping (π̂i, F̂
ω
i , Ĝ

ω
i ) 7→ ψ̂i(a, σ|ω,λ) is continuous. By continuity,

for any δ2 > 0, there exists a δ > 0 such that if ||π̂i − π|| < δ, ||F̂ ω
i − F ω|| < δ

and ||Ĝω
i − Gω|| < δ for all θi ∈ ΘS, then |ψ̂i(a, σ|ω,λ) − ψ(a, σ|ω,λ)| < δ2 for all

(a, σ) ∈ A×Σ, λ ∈ {0,∞}k and θi ∈ ΘS. Choose δ2 sufficiently small so that Theorem

3 holds. Similar logic holds for ω = L. �

Proof of Theorem 5. Assume Assumptions 1, 2, 3 and 4, and suppose ω = R. Under

these assumptions, if 〈λi,t〉 converges for any type θi, then the support of the limit belief

λ∞ is a subset of {0,∞}, i.e. supp(λ∞) ⊂ {0,∞}. Let θi be a correctly specified

type. Then its subjective probability of each action is equal to the true probability,

ψ̂i = ψ. Therefore, given ω = R, 〈λi,t〉 is a martingale for any learning environment

{Θ, π, FR, FL}. By the Martingale Convergence Theorem, 〈λi,t〉 converges almost surely

to a limit random variable λ∞ with supp(λ∞) ⊂ [0,∞). This rules out incorrect and

cyclical learning. Therefore, zero is the only candidate limit belief for the correctly

specified type, supp(λ∞) = {0}, and it must be that λi,t → 0 almost surely. �

A.5 Proofs from Section 5 (Applications)

A.5.1 Proofs from Section 5.1 (Level-k/Cognitive Hierarchy)

The following lemma implies that a disagreement outcome arises with positive probabil-

ity iff it is in Λ(ω).

Lemma 14. In the level-k/cognitive hierarchy model, both disagreement outcomes (0,∞)

and (∞, 0) are maximally accessible for all distributions of types π ∈ ∆(Θ) and q ∈ (0, 1).

Proof. At λ = (0, 0), type θ2 perceives R actions as stronger evidence of state R than

type θ3,

ψ̂2(R|L, (0, 0))

ψ̂2(R|R, (0, 0))
=
FL(1/2)

FR(1/2)
<
q + (1− q)FL(1/2)

q + (1− q)FR(1/2)
=
ψ̂3(R|L, (0, 0))

ψ̂3(R|R, (0, 0))
,

and both types perceive L actions in the same way,

ψ̂2(L|L, (0, 0))

ψ̂2(L|R, (0, 0))
=
ψ̂3(L|L, (0, 0))

ψ̂3(L|R, (0, 0))
=

1− FL(1/2)

1− FR(1/2)
. (26)

Therefore, θ3 �(0,0) θ2. From Definition 5, this implies that (0,∞) is maximally acces-

sible. At λ = (∞,∞), type θ2 perceives L actions as stronger evidence of state L than
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type θ3,

ψ̂2(L|L, (∞,∞))

ψ̂2(L|R, (∞,∞))
=

1− FL(1/2)

1− FR(1/2)
>
q + (1− q)(1− FL(1/2))

q + (1− q)(1− FR(1/2))
=
ψ̂3(L|L, (∞,∞))

ψ̂3(L|R, (∞,∞))
,

and both types perceive R actions in the same way,

ψ̂2(R|L, (∞,∞))

ψ̂2(R|R, (∞,∞))
=
ψ̂3(R|L, (∞,∞))

ψ̂3(R|R, (∞,∞))
=
FL(1/2)

FR(1/2)
. (27)

Therefore, θ2 �(∞,∞) θ3. From Definition 5, this implies that (∞, 0) is maximally acces-

sible. �

Proof of Proposition 1. As q → 1, as argued in the text, only disagreement outcomes

can be locally stable. So either Λ(ω) = ∅ or Λ(ω) ⊆ {(0,∞), (∞, 0)}. By Lemma 14, if

a disagreement outcome is locally stable, then it is globally stable. We must also rule

out mixed outcomes. Suppose ω = R and consider the four possible mixed outcomes.

1. Consider the mixed outcome in which λ2 does not converge and λ3 → 0. By the

concavity of the log operator,

FR(1/2) log

(
FL(1/2)

FR(1/2)

)
+ (1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
< 0.

Therefore, since FL(1/2)
FR(1/2)

< 0,

γ2((0, 0), R) = (π(θ1)F
R(1/2) + π(θ2) + π(θ3)) log

(
FL(1/2)

FR(1/2)

)
+ π(θ1)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
< 0.

Therefore, (0, 0) ∈ Λ2(R). By the definition of ΛM(R), this implies that λ3 = 0 6∈
ΛM(R) and this mixed learning outcome almost surely does not arise.

2. Consider the mixed outcome in which λ2 does not converge and λ3 → ∞. This

outcome is in ΛM(R) if (∞,∞) 6∈ Λ2(R) and (0,∞) 6∈ Λ2(R), which is equivalent

to γ2((∞,∞), R) < 0 and γ2((0,∞), R) > 0. However, γ2((λ2,∞), R) is increasing

in λ2, so this is not possible. Therefore, λ3 =∞ 6∈ ΛM(R) and this mixed learning

outcome almost surely does not arise.

3. Consider the mixed outcome in which λ2 → 0 and λ3 does not converge. This

outcome is in ΛM(R) if (0, 0) 6∈ Λ3(R) and (0,∞) 6∈ Λ3(R). From the text, we
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know that (0,∞) ∈ Λ3(R). Therefore, λ2 = 0 6∈ ΛM(R) and this mixed learning

outcome almost surely does not arise.

4. Consider the mixed outcome in which λ2 → ∞ and λ3 does not converge. This

outcome is in ΛM(R) if (∞, 0) 6∈ Λ3(R) and (∞,∞) 6∈ Λ3(R). From the text, we

know that (∞, 0) ∈ Λ3(R). Therefore, λ2 = ∞ 6∈ ΛM(R) and this mixed learning

outcome almost surely does not arise.

Therefore, ΛM(R) = ∅ and mixed outcomes almost surely do not arise if the state is R.

Similar logic rules out mixed outcomes if the state is L.

Given ΛM(ω) = ∅ and both disagreement outcomes are maximally accessible, by

Theorem 1, Λ(ω) determines the set of asymptotic learning outcomes. Either Λ(ω) = ∅,
in which case learning is cyclical for both types, or Λ(ω) ⊆ {(0,∞), (∞, 0)} and Λ(ω) 6=
∅, in which case beliefs almost surely converge to a limit random variable with support

Λ(ω).

Part 1: As π(θ3)→ 0,

γ2((0,∞), R)→ (π(θ1)F
R(1/2) + π(θ2)) log

(
FL(1/2)

FR(1/2)

)
+ π(θ1)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
< 0,

so (0,∞) ∈ Λ2(R), and as π(θ3)→ 1,

γ2((0,∞), ω)→ log

(
1− FL(1/2)

1− FR(1/2)

)
> 0,

so (0,∞) 6∈ Λ2(ω). Moreover π 7→ γ2 is continuous and γ2((0,∞), ω) is increasing in

π(θ3). Therefore, there exists an interior cut-off above which (0,∞) 6∈ Λ(R). Similarly,

as π(θ3)→ 1,

γ2((∞, 0), ω)→ log

(
FL(1/2)

FR(1/2)

)
< 0,

so (∞, 0) 6∈ Λ2(ω). Therefore, there exists a cut-off above which (∞, 0) 6∈ Λ(ω). From

the text, we know that (0, 0) 6∈ Λ(ω) and (∞,∞) 6∈ Λ(ω). Therefore, there exists an

interior cutoff π̄3 ∈ (0, 1) such that if π(θ3) > π̄3, then Λ(R) = ∅. The case for ω = L is

analogous.
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Part 2: From the text, we know that for any π, Λ3(ω) = {(0,∞), (∞, 0)}. As π(θ2)→ 0,

γ2((∞, 0), R)→ (π(θ1)F
R(1/2) + π(θ3) log

(
FL(1/2)

FR(1/2)

)
+ π(θ1)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
< 0,

so (∞, 0) 6∈ Λ2(R), and as π(θ2)→ 1,

γ2((0,∞), ω)→ log

(
FL(1/2)

FR(1/2)

)
< 0

γ2((∞, 0), ω)→ log

(
1− FL(1/2)

1− FR(1/2)

)
> 0,

so Λ2(ω) = {(0,∞), (∞, 0)}. Further, γ2((0,∞), ω) is decreasing in π(θ2) and γ2((∞, 0), ω)

is increasing in π(θ2). Therefore, there exists an interior cutoff π̄2 ∈ (0, 1) such that if

π(θ2) > π̄2, then Λ(R) = {(0,∞), (∞, 0)}. The case for ω = L is analogous.

Part 3: As argued above, γ2((0,∞), ω) is strictly increasing and γ2((∞, 0), ω) is strictly

decreasing in π(θ3). Therefore, for fixed π(θ1) or π(θ2), it is sufficient to characterize

the unique value of π(θ3) at which γ2((0,∞), ω) = 0 or γ2((∞, 0), ω) = 0. Fix π(θ1) and

consider ω = R. At π(θ2) = π(θ3) = 0,

γ2((∞, 0), R) = FR(1/2) log

(
FL(1/2)

FR(1/2)

)
+ (1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
< 0.

Since γ2((∞, 0), R) is decreasing in π(θ3), (∞, 0) is never locally stable when π(θ2) = 0.

On the other hand, at π(θ2) = π(θ3) = 0, γ2((0,∞), R) < 0, and at π(θ2) = 0, π(θ3) = 1,

γ2((0,∞), R) > 0. Therefore, there exists an interior cutoff π̄R3 ∈ (0, 1) such that at

π(θ2) = 0 and π(θ3) = π̄R3 , γ2((0,∞), R) = 0. If ω = L, this condition reverses, so

(0,∞) is never locally stable, while there is an interior cutoff π̄L3 ∈ (0, 1) such that at

π(θ2) = 0 and π(θ3) = π̄L3 , γ2((∞, 0), L) = 0. Moreover, as π(θ1) → 0, the cutoff for

(0,∞) is

π(θ3) =
log FR(1/2)

FL(1/2)

log FR(1/2)
FL(1/2)

− log 1−FR(1/2)
1−FL(1/2)

,

while at (∞, 0),

π(θ3) =
log 1−FR(1/2)

1−FL(1/2)

log 1−FR(1/2)
1−FL(1/2) − log FR(1/2)

FL(1/2)

.
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Finally, note that γ2(λ, ω) is linear in π(θ3). Therefore, if

log FR(1/2)
FL(1/2)

log FR(1/2)
FL(1/2)

− log 1−FR(1/2)
1−FL(1/2)

≥
log 1−FR(1/2)

1−FL(1/2)

log 1−FR(1/2)
1−FL(1/2) − log FR(1/2)

FL(1/2)

,

then in the simplex, the line at which γ2((0,∞), R) = 0 lies above the line at which

γ2((∞, 0), R) = 0 (and the reverse for ω = L) and (∞, 0) ∈ Λ(R) ⇒ (0,∞) ∈ Λ(R).

Otherwise, the lines cross exactly once, and there exists a cutoff π̄1 such that if π(θ1) ≥
π̄1, then (∞, 0) ∈ Λ(R) ⇒ (0,∞) ∈ Λ(R), and if π(θ1) ≤ π̄1, then (∞, 0) ∈ Λ(R) ⇒
(0,∞) ∈ Λ(R). If the inequality is switched, then analogous properties hold with the

states switched.

�

Proof of Proposition 2. Suppose ω = R. Let α ≡ FR(1/2) be the probability a

level-1 type plays action R. Consider the level-2 type. Since α > 1/2,

γ2((0, 0), R) = −
(

1 + 2α

3

)
log

(
α

1− α

)
< 0

γ2((∞, 0), R) =

(
1− 2α

3

)
log

(
α

1− α

)
< 0

γ2((0,∞), R) =

(
1− 2α

3

)
log

(
α

1− α

)
< 0

γ2((∞,∞), R) =

(
3− 2α

3

)
log

(
α

1− α

)
> 0.

Therefore, Λ2(R) = {(0, 0), (0,∞), (∞,∞)}. Consider the level-3 type.

γ3((∞,∞), R) =
(α

3

)
log

(
1− α
α

)
+

(
3− α

3

)
log

(
q + (1− q)α

q + (1− q)(1− α)

)
γ3((0,∞), R) =

(
1 + α

3

)
log

(
q + (1− q)(1− α)

q + (1− q)α

)
+

(
2− α

3

)
log

(
α

1− α

)
γ3((0, 0), R) =

(
2 + α

3

)
log

(
q + (1− q)(1− α)

q + (1− q)α

)
+

(
1− α

3

)
log

(
α

1− α

)
.

If γ3((∞,∞), R) > 0, then (∞,∞) ∈ Λ(R). From these expressions, γ3((∞,∞), R) is

positive at q = 0, decreasing in q, and negative at q = 1. Therefore, there exists a q2 such

that for q < q2, (∞,∞) ∈ Λ(R), and for q > q2, (∞,∞) /∈ Λ(R). If γ3((0,∞), R) > 0,

then (0,∞) ∈ Λ(R) and if γ3((0, 0), R) < 0, then (0, 0) ∈ Λ(R). The expressions

γ3((0, 0), R) < γ3((0,∞), R) are both negative at q = 0, increasing in q, and positive

at q = 1. Therefore, there exists q1 < q3 such that (0, 0) ∈ Λ(R) for q < q3 and
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(0, 0) /∈ Λ(R) for q > q3, while (0,∞) /∈ Λ(R) for q < q1 and (0,∞) ∈ Λ(R) for q > q1.

This yields the characterization of Λ(R) as a function of q.

It immediately follows from Theorem 1 that the agreement outcomes (0, 0) and

(∞,∞) are globally stable iff they are in Λ(R). By Lemma 14, both disagreement out-

comes are maximally accessible. Therefore, (0,∞) is globally stable iff (0,∞) ∈ Λ(R).

Finally we have to rule out mixed outcomes. In the region where both correct learning

and incorrect learning are locally stable (parts 1 and 2), it immediately follows that

ΛM(R) is empty and mixed outcomes almost surely do not arise. Given γ2((∞, 0), R) < 0

and

γ3((∞, 0), R) =

(
1 + α

3

)
log

(
1− α
α

)
+

(
2− α

3

)
log

(
q + (1− q)α

q + (1− q)(1− α)

)
< γ3((∞,∞), R) < 0,

λ2 = ∞ 6∈ ΛM(R). If disagreement and correct learning are locally stable (part 3),

then λ2 = ∞ is the only candidate mixed outcome and therefore, ΛM(R) is empty. If

only disagreement is locally stable (part 4), we also have to rule out λ3 = 0. But since

(0, 0) 6∈ Λ(R), γ3((0, 0), R) > 0. Also, γ2((0, 0), R) < 0. Therefore, λ3 = 0 6∈ ΛM(R).

Therefore, ΛM(R) is empty for all q ∈ (0, 1].

Given this characterization, by Theorem 1, beliefs almost surely converge to a limit

random variable λ∞ with suppλ∞ = Λ(R). �

A.5.2 Proofs from Section 5.2 (Partisan Bias)

Proof of Proposition 3. Both partisan and nonpartisan types believe that share

α of agents are autarkic. Partisan types think these autarkic types are also partisan,

while nonpartisan types think these autarkic types are also nonpartisan. Let xω1 (ν) ≡
F ω(0.51/ν) be the probability that the partisan autarkic type plays action R and xω2 ≡
F ω(0.5) be the probability that the nonpartisan autarkic type plays action R in state

ω. Then xR1 (ν) ≤ xR2 and xL1 (ν) ≤ xL2 for all ν ∈ (0, 1), since partisan types slant

information in favor of state L. Moreover, action R occurs more often in state R, so

xR2 > xL2 and xR1 (ν) > xL1 (ν) for all ν ∈ (0, 1). Nonpartisan types believe that autarkic

types play action R with probability xω2 , and partisan types believe that autarkic types

play action R with probability F̂ ω
1 (0.51/ν) = F ω(0.5) = xω2 .

Let γν,q1 (λ, ω) be the value of γ1(λ, ω) in the model with partisan bias level ν and

frequency q, with an analogous definition of γν,q2 (λ, ω). Since partisan and nonpartisan

sociable types have the same subjective probability of each action, beliefs can never

separate. Therefore, asymptotic disagreement and mixed learning is not possible. Ad-

ditionally, γν,q1 = γν,q2 , and therefore, we only need to check the sign of γν,q1 ((0, 0), ω) to
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determine whether (0, 0) is locally stable, and the sign of γν,q1 ((∞,∞), ω) to determine

whether (∞,∞) is locally stable. Recall that global stability immediately follows for

agreement outcomes.

Suppose ω = R. To determine whether (∞,∞) ∈ Λ(R) at (ν, q), we need to deter-

mine the sign of

γν,q1 ((∞,∞), R) = ψν,q(R|R, (∞,∞)) log
ψ̂1(R|L, (∞,∞))

ψ̂1(R|R, (∞,∞))

+ ψν,q(L|R, (∞,∞)) log
ψ̂1(L|L, (∞,∞))

ψ̂1(L|R, (∞,∞))
,

where

ψ̂1(R|ω, (∞,∞)) = αxω2

ψ̂1(L|ω, (∞,∞)) = α(1− xω2 ) + 1− α
ψν,q(R|R, (∞,∞)) = αqxR1 (ν) + α(1− q)xR2
ψν,q(L|R, (∞,∞)) = αq(1− xR1 (ν)) + α(1− q)(1− xR2 ) + 1− α.

If ν = 1, then xR1 (1) = xR2 , so

ψ1,q(R|R, (∞,∞)) = ψ̂1(R|R, (∞,∞))

and

ψ1,q(L|R, (∞,∞)) = ψ̂1(L|R, (∞,∞)).

Therefore, γ1,q1 ((∞,∞), R) < 0 by the concavity of the log operator, for any q. At ν = 0

and q = 1, xR1 (0) = 0 and therefore ψ0,1(R|R, (∞,∞)) = 0. Note that R actions decrease

the likelihood ratio, log ψ̂1(R|L,(∞,∞))

ψ̂1(R|R,(∞,∞))
< 0, while L actions increase the likelihood ratio,

log ψ̂1(L|L,(∞,∞))

ψ̂1(L|R,(∞,∞))
> 0, independently of q and ν. Therefore, γ0,11 ((∞,∞), R) > 0. Also,

ψν,q(R|R, (∞,∞)) is strictly decreasing in q and strictly increasing in ν, since xR1 (ν)

is strictly increasing in ν. Therefore, γν,q1 ((∞,∞), R) is strictly decreasing in ν and

increasing in q. Therefore, there exists a cutoff q1 such that for q > q1, there exists

a cutoff ν1(q) > 0 such that for ν < ν1(q), γ
ν,q
1 ((∞,∞), R) > 0 and (∞,∞) is locally

stable, while for ν > ν1(q), γ
ν,q
1 ((∞,∞), R) < 0 and (∞,∞) is not locally stable.

To determine whether (0, 0) ∈ Λ(R) at (ν, q), we need to determine the sign of

γν,q1 ((0, 0), R) = ψν,q(R|R, (0, 0)) log
ψ̂1(R|L, (0, 0))

ψ̂1(R|R, (0, 0))
+ψν,q(L|R, (0, 0)) log

ψ̂1(L|L, (0, 0))

ψ̂1(L|R, (0, 0))
,
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where

ψ̂1(R|ω, (0, 0)) = αxω2 + 1− α
ψ̂1(L|ω, (0, 0)) = α(1− xω2 )

ψν,q(R|R, (0, 0)) = αqxR1 (ν) + α(1− q)xR2 + 1− α
ψν,q(L|R, (0, 0)) = αq(1− xR1 (ν)) + α(1− q)(1− xR2 ).

If ν = 1, then xR1 (1) = xR2 , so ψ1,q(R|R, (0, 0)) = ψ̂1(R|R, (0, 0)) and ψ1,q(L|R, (0, 0)) =

ψ̂1(L|R, (0, 0)). Therefore, γ1,q1 ((0, 0), R) < 0 by the concavity of the log operator. At

ν = 0 and q = 1, then xR1 (0) = 0, and therefore ψ0,1(R|R, (0, 0)) = 1 − α. Therefore,

γ0,11 ((0, 0), R) > 0. Moreover, γν,q1 ((0, 0), R) is strictly increasing in q and strictly de-

creasing in ν, since xR1 (ν) is strictly increasing in ν. Therefore, there exists a cut-off

q2 < 1 such that for any q > q2, there exists a cutoff ν2(q) such that for ν < ν2(q),

γν,q1 ((0, 0), R) > 0 and (0, 0) is not locally stable, and for ν > ν2(q), γ
ν,q
1 ((0, 0), R) < 0

and (0, 0) is locally stable.

Suppose ω = L. Then γ1,q((∞,∞), L) > 0 and γ1,q((0, 0), L) > 0 for all q ∈ [0, 1],

since only correct learning can occur for ν = 1. The only change in the above expressions

is that now the true measures are taken for state L, rather than state R. Therefore,

all of the comparative statics on γ are preserved. As above, for any q, γν,q((0, 0), L)

is decreasing in ν. Therefore, γν,q((0, 0), L) > 0 for all ν and q, and incorrect learning

is never locally stable. Also, for any q, γν,q((∞,∞), L) is decreasing in ν. Therefore,

γν,q((∞,∞), L) > 0 for all ν and q, and correct learning is always locally stable. �

A.5.3 Proofs from Section 5.3 (Social Perception Bias)

Proof of Propositions 4 and 5. Recall

γx,1(λ1, ω) =
∑
a

ψx(a|ω, λ1) log
ψ̂x,1(a|L, λ1)
ψ̂x,1(a|R, λ1)

.

When there is a single type, 0 ∈ Λx(ω) iff γx,1(0, ω) < 0 and∞ ∈ Λx(ω) if γx,1(∞, ω) > 0.

If λ1 =∞, both types choose the risky action a1 and the misspecification over types is

irrelevant. Therefore, ψ̂x,1(a|ω,∞) = ψx(a|ω,∞) and θ1 is correctly specified at λ1 =∞.

This implies γx,1(∞, R) < 0 and γx,1(∞, L) > 0, which establishes that ∞ 6∈ Λx(R) and

∞ ∈ Λx(L). Therefore, almost surely, λ1 6→ ∞ in state R, and λ1 → ∞ with positive

probability in state L.
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Suppose ω = R. Then

γx,1(0, R) = ((1− π(θ1))q
R + π(θ1)) log

(1− π̂1(θ1))qL + π̂1(θ1)

(1− π̂1(θ1))qR + π̂1(θ1)
(28)

+ (1− π(θ1))(1− qR) log
1− qL

1− qR
.

This expression is strictly decreasing in π̂1(θ1) and is strictly negative at π̂1(θ1) = π(θ1).

Let πR ∈ [0, π(θ1)) be either the value of π̂1(θ1) at which (28) is equal to zero, or πR = 0

if (28) is negative for all π̂1(θ1). As π(θ1) → 1, the limit of (28) is strictly positive, so

πR is not always equal to zero. Therefore, 0 6∈ Λx(R) for π̂1(θ1) < πR and 0 ∈ Λx(R)

for π̂1(θ1) > πR. As shown above, ∞ 6∈ Λx(R). Therefore, if π̂1(θ1) < πR, Λx(R) = ∅
and almost surely, beliefs do not converge. If π̂1(θ1) > πR, Λx(R) = {0} and learning is

complete.

Next we show that πR is increasing in π(θ1). The first term on the right hand side of

(28) is positive and the second is negative. Increasing π(θ1) increases the weight placed

on the positive term and decreases the weight placed on the negative term. Therefore,

γx,1(0, R) is increasing in π(θ1). Fixing π̂1(θ1), if at π(θ1), γx,1(0, R) = 0, increasing

π(θ1) makes γx,1(0, R) strictly positive. Since γx,1(0, R) is decreasing in π̂1(θ1), the new

cut-off is larger than the original cut-off.

Suppose ω = L. Then

γx,1(0, L) = ((1− π(θ1))q
L + π(θ1)) log

(1− π̂1(θ1))qL + π̂1(θ1)

(1− π̂1(θ1))qR + π̂1(θ1)
(29)

+ (1− π(θ1))(1− qL) log
1− qL

1− qR
.

This expression is strictly decreasing in π̂1(θ1), is strictly positive at π̂1(θ1) = π(θ1) and

is strictly negative at π̂1(θ1) = 1, since the second term on the right hand side of (29)

is strictly negative. Let πL ∈ (π(θ1), 1) be the value of π̂1(θ1) at which (29) is equal to

zero. Therefore, 0 6∈ Λx(L) for π̂1(θ1) < πL and 0 ∈ Λx(L) for π̂1(θ1) > πL. As shown

above, ∞ ∈ Λx(L). Therefore, if π̂1(θ1) < πL, Λx(L) = {∞} and almost surely, learning

is complete. If π̂1(θ1) > πL, Λx(L) = {0,∞} and both correct and incorrect learning

occur with positive probability.

Finally, we show that πL is increasing in π(θ1). Equation (29) is increasing in π(θ1).

Therefore, as π(θ1) increases, if γx,1(0, L) = 0 at π̂1(θ1) before, it is positive there now.

�
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B Learning from Outcomes

States and Actions. The state and action space are the same as in Section 2.

Outcomes and Histories. Each agent’s choice of action leads to a stochastic outcome

x ∈ X , where 2 ≤ |X | < ∞ is the outcome space. When the agent chooses action a,

the outcomes are distributed according to Hω(x|a). Assume that no outcome perfectly

reveals the state, which implies that (HL(·|a), HR(·|a)) are mutually absolutely contin-

uous with common support for all a ∈ A. An action has full support if all outcomes

occur with positive probability following this action i.e. suppH(·|a) = X . An action a

is informative if, following this action, at least one realized outcome reveals information

about the state i.e. dHL

dHR (·|a) 6= 1.

Assumption 5 (Informative Action). There exists at least one informative full support

action.

We restrict attention attention to environments in which outcomes are aligned, in that we

can order the outcome space so that for any two actions a and a′, if outcome x is stronger

evidence for state L than outcome x′′, conditional on a, then it is also stronger evidence

for state L, conditional on a′. This is analogous to aligned preferences (Assumption 2).

Assumption 2∗ (Aligned Outcomes). Outcomes are aligned for all actions i.e. for all

actions a, a′ ∈ A, HL(·|a), HR(·|a) and HL(·|a′), HR(·|a′) are aligned.

Outcomes, but not actions, are observed by subsequent agents. To keep the notation

simple, assume that there are no public or private signals. Therefore, subsequent agents

learn solely from the information that outcomes convey about the state. The history at

time t is the sequence of past outcome realizations ht = {x1, x2, . . . , xt−1}.

Types Framework. An agent’s type specifies her model of inference and her prefer-

ences. Agent t has privately observed type θt ∈ Θ, where Θ is a non-empty finite set

and π ∈ ∆(Θ) is the distribution over types. Now, a model of inference determines how

a type learns from prior outcomes. For each type θi, this includes (i) a subjective belief

about the outcome distribution, Ĥω
i (x|a) for each ω ∈ {L,R} and a ∈ A, and (ii) a

subjective belief about the likelihood of other types, π̂i ∈ ∆(Θ). Assume that each type

believes that no outcome perfectly reveals the state, (ĤL
i (·|a), ĤR

i (·|a)) are mutually

absolutely continuous for all a ∈ A and θ ∈ Θ.

A type’s payoffs depend on the realized outcome, in addition to the action and the

state. Let vi : A × X × Ω → R denote the preferences for type θi. We work directly

with the reduced form preferences, ui(a, ω) = Êi(vi(a, x, ω)|a, ω), where the expectation

is taken with respect to the type’s potentially misspecified probability distribution over
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outcomes, conditional on the state, and its action choice. Assume that each type has a

unique optimal action when the state is known.

We restrict attention to environments in which the way that each type interprets

outcomes is aligned with the true distribution. This is analogous to aligned signals

(Assumption 1).

Assumption 1∗ (Aligned Subjective Outcomes). Outcomes are aligned for all informa-

tive types θi i.e. ĤL
i (·|a), ĤR

i (·|a) and HL(·|a), HR(·|a) are aligned for all a ∈ A.

Fixing an action a, this assumption ensures that for any two outcomes x and x′, if x

leads to a higher true belief that the state is L than x′, then it also leads to a higher

subjective belief that the state is L for all types. We make one exception to continue to

allow some types to perceive all outcomes as being uninformative.

We also need an assumption to ensure that outcomes are always informative and

perceived as informative. The following assumption requires that at least one action

that occurs with positive probability is informative and generates every possible outcome.

This is the analogue of Assumptions 3 and 4.

Assumption 3∗ (Adequate Consistent Information). Assume that there exists a type

θi that plays an informative full support action at all beliefs λi ∈ [0,∞), and all types

believe that there is a type that plays an informative full support action at all beliefs

λi ∈ [0,∞].

This ensures that adequate information arrives for complete learning in correctly spec-

ified models. It also rules out outcome realizations that are inconsistent with a type’s

model of inference.

The Individual Decision-Problem. Given λi, let a(θ, λi) denote the optimal action

for type θ at belief λi,

a(θ, λi) ≡ arg max
a∈A

∑
x∈X

((
1

1 + λi

)
vi(a, x, L)ĤL

i (x|a) +

(
λi

1 + λi

)
vi(a, x,R)ĤR

i (x|a)

)

A type θi is indifferent between actions at finitely many interior beliefs. How ties are

broken is irrelevant for the results, so for notational convenience, actions will be treated

as if they are unique.

The Likelihood Ratio. For any equilibrium we can define the true and subjective

probabilities of each outcome as

ψx(x|ω,λ) ≡
n∑
j=1

π(θj)dH
ω(x|a(θj, λj)), (30)
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and

ψ̂x,i(x|ω,λ) =
n∑
j=1

π̂i(θj)dĤ
ω
i (x|a(θj, λj)), (31)

where dĤω
i (x|a) denotes type θi’s subjective probability of outcome x in state ω, condi-

tional on action a. We can use these probabilities to construct the likelihood ratio, as

in (5) and (6).

Asymptotic Learning Characterization. We construct analogous expressions to

charactertize asymptotic learning outcomes when agents learn from outcomes. Let

γx,i(λ, ω) ≡
∑
x∈X

ψx(x|ω,λ) log
ψ̂x,i(x|L,λ)

ψ̂x,i(x|R,λ)
. (32)

Define Λx,i(ω) as the analogue of (8) for γx,i(λ, ω), Λx,M(ω) as the analogue of (10), and

let Λx(ω) ≡ ∩ki=1Λx,i(ω).

By Assumption 5, there exists an informative full support action. Let a∗ denote one

such action. Let xL denote the maximal outcome in state L when a∗ is chosen, i.e. the

outcome that maximizes dĤL
i (x|a∗)/dĤR

i (x|a∗). Observing this outcome leads to the

largest increase in the likelihood ratio. Similarly, let xR denote the minimal outcome

in state L when a∗ is chosen, i.e. the outcome that minimizes dĤL
i (x|a∗)/dĤR

i (x|a∗).
Observing this outcome leads to the largest decrease in the likelihood ratio. By finiteness

of the outcome space, these exist. By Assumption 2∗, for any action a such that xL (xR)

is in the support of the outcomes that arise following a, xL (xR) is the maximal (minimal)

outcome, conditional on a. By Assumption 1∗, xL and xR are also perceived to be the

maximal and minimal outcomes. Given xL and xR, define a maximal L-order analogous

to Definition 5, using the subjective probabilities of the maximal outcomes in each state,

ψ̂x,i(xR|ω,λ) and ψ̂x,i(xL|ω,λ). Maximal accessibility for outcomes remains identical to

Definition 6.

An analogue of Theorem 1 holds with respect to Λx(ω), and we can fully characterize

asymptotic learning when agents learn from outcomes.

Theorem 1∗. Assume Assumptions 1∗, 2∗, 3∗ and 5. Suppose there are two sociable

types, k = 2, and ω = R.

1. Agreement. Correct learning occurs with positive probability iff (0, 0) ∈ Λx(R)

and incorrect learning occurs with positive probability iff (∞,∞) ∈ Λx(R).

2. Disagreement. Sociable types disagree with positive probability if Λx(R) contains

a maximally accessible disagreement outcome, and sociable types almost surely do
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not disagree if Λx(R) contains no disagreement outcomes. Each maximally acces-

sible disagreement outcome in Λx(R) occurs with positive probability

3. Cyclical Learning. Cyclical learning occurs almost surely for all sociable types

if Λx(R) ∪ Λx,M(R) is empty, and cyclical learning occurs almost surely for at

least one sociable type if Λx(R) is empty. Cyclical learning almost surely does not

occur for any sociable type if Λx(R) contains an agreement outcome or maximally

accessible disagreement outcome and Λx,M(R) is empty.

An analogous result holds for ω = L.44

The outcomes x ∈ X function effectively the same way as actions in the original

model. When beliefs are in a sufficiently small neighborhood around the extreme beliefs,

the probability of each action, and therefore, the distribution of realized outcomes, are

distributed independently, conditional on the state. Similar arguments can be used to

establish local stability. Further, outcomes are aligned across actions and types, and

the maximal and minimal outcomes xL and xR serve the same purpose as the analogous

action and signal pairs (aL, σL) and (aR, σR). Therefore, similar arguments establish

global convergence. We omit a formal proof of Theorem 1∗, as it directly mirrors the

proof of Theorem 1.

Robustness of Complete Learning. Under these modified assumptions, a direct

analogue of Theorem 3 holds with respect to ψx and ψ̂x,i. Additionally, a second robust-

ness result similar to Theorem 4 holds. By the continuity of ψ̂i,x, if all sociable types

have subjective type and outcome distributions close to the true distributions, i.e. there

exists a δ > 0 such that ||π̂i − π|| < δ and ||Ĥω
i (·|a) − Hω(·|a)|| < δ for all a ∈ A and

ω ∈ {L,R}, then learning is complete. Further, agents can be very wrong about the type

distribution, as long as the types that they do believe to occur are “close” to the actual

types. We define a measure of closeness with respect to the optimal action for each type

at belief λ, denoted ai(λ) for type θi. Theorem 4∗ states this general robustness result.

The case in which the subjective type distributions are close to the true distribution,

||π̂i − π|| < δ, is a special case of Theorem 4∗.

Theorem 4∗. Assume Assumptions 1∗, 2∗, 3∗ and 5, and fix state ω. Let Θ(a,λ) ≡
{θi|ai(λ) = a}. There exists a δ > 0 such that if ||π̂i(Θ(·,λ)) − πi(Θ(·,λ))|| < δ for

λ ∈ {0,∞}k and ||Ĥω
i (·|a) − Hω(·|a)|| < δ for all a ∈ A and for all sociable types θi,

then learning is complete in state ω.

44As in the main paper, the statement of the theorem is identical for k > 2, modifying the definitions
of Λx(ω), Λx,M (ω) and maximal accessibility in an analogous way to Appendix A.2.
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Proof. Let λ ∈ {0,∞}k. Recall that

ψ̂x,i(x|ω,λ) =
n∑
j=1

π̂i(θj)dĤ
ω
i (x|aj(λ)).

Since no type mixes at beliefs λ ∈ {0,∞}k, we can group types by the action they play

at λ. grouping types by the action they play at λ. Therefore,

ψ̂x,i(x|ω,λ) =
∑
a∈A

∑
θj∈Θ(a,λ)

π̂i(θj)dĤ
ω
i (x|a)

=
∑
a∈A

dĤω
i (x|a)

∑
θj∈Θ(a,λ)

π̂i(θj)

=
∑
a∈A

dĤω
i (x|a)π̂i(Θ(a,λ)).

So for all θi ∈ Θs, ψ̂x,i varies continuously in Ĥω
i (·|a) and π̂i. This implies that γx,i(λ, ω)

varies continuously. In any correctly specified model, γx,i(λ, R) is strictly negative at all

stationary beliefs λ ∈ {0,∞}k. Therefore, there exists a sufficiently small δ such that

if ||Ĥi(·|a)−H(·|a)|| < δ and ||π̂i(Θ(·,λ))− π(Θ(·,λ))|| < δ, then γx,i(λ, R) < 0 at all

stationary beliefs. As argued in Appendix A.2, if γx,i(λ, R) < 0 for all stationary λ, then

Λx,M(R) is empty. Similarly, δ can be chosen to be sufficiently small so that γx,i(λ, L)

is strictly positive at all stationary beliefs λ ∈ {0,∞}k. Therefore, correct learning is

robust to some misspecification. �

C Posterior Representation.

Let Z be a signal space. Let µω ∈ ∆(Z) and νω ∈ ∆(Z) be probability measures

on Z in state ω. Assume µL, µR and νL, νR are mutually absolutely continuous. Let

s(z) ≡ 1/(1 + dµR

dµL
(z)) and p(z) ≡ 1/(1 + dνR

dνL
(z)) denote the posterior belief that the

state is L. The c.d.f.s F ω
s (x) ≡ µω(z|s(z) ≤ x) and Gω

p (x) ≡ νω(z|p(z) ≤ x) are the

distributions of the posterior belief s and p under measure µω and νω, respectively.

Given these two measures, we can also define the distribution of p under measure µω

as F ω
p (x) ≡ µω(z|p(z) ≤ x), and the distribution of s under measure νω as Gω

s (x) ≡
νω(z|s(z) ≤ x).

Multiple signals z and z′ can lead to the same posterior beliefs. Therefore, two

distributions can map to the same distribution over posterior beliefs. This means that

these distributions over Z can map the same signals to the same posterior belief, but

have different measures over these signals z and z′. The following property describes

an equivalence class of probability measures. These measures have the same ordinal

ranking of signals and the same distribution over posterior beliefs.
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Definition 15 (Equivalent Measures). Measures µL, µR and νL, νR are equivalent iff

they are aligned, suppµ = supp ν, and µω(z|1/(1+ dµR

dµL
(z)) ≤ x) = νω(z|1/(1+ dνR

dνL
(z)) ≤

x) for all x ∈ [0, 1] and ω ∈ {L,R}.

Lemma 15 establishes that when a probability measure νL, νR ∈ ∆(Z)2 is aligned

with probability measure µL, µR ∈ ∆(Z)2, there is a unique representation of νL, νR as

(r,GL
s ), where r : suppFs → [0, 1] is a strictly increasing function mapping the posterior

s to the posterior p and GL
s is the distribution of s under measure νL.

Lemma 15. Suppose µL, µR have full support and signals are informative, dµR

dµL
(z) 6= 1.

1. For any mutually absolutely continuous probability measures νL, νR ∈ ∆(Z)2 that

have full support and are aligned with µL, µR, there exists a unique (r,GL
s ), where

r : suppFs → [0, 1] is a strictly increasing function with r(inf suppFs) < 1/2 and

r(sup suppFs) > 1/2, such that r(s(z)) = 1/(1 + dνR

dνL
(z)) for all z ∈ Z and GL

s is

the distribution of s under measure νL.

2. For any strictly increasing function r : suppFs → [0, 1] and any c.d.f. GL
s

with suppGL
s = suppFs and

∫ 1

0

(
1−r(s)
r(s)

)
dGL

s = 1, there exist unique (up to an

equivalent pair of measures) mutually absolutely continuous probability measures

(νL, νR) ∈ ∆(Z)2 that have full support, are aligned with µL, µR, and satisfy

r(s(z)) = 1/(1 + dνR

dνL
(z)) for all z ∈ Z. The measures νL, νR are aligned with

µL, µR.45

3. For any strictly increasing function r : suppFs → [0, 1] such that r(inf suppFs) <

1/2 and r(sup suppFs) > 1/2, there exists mutually absolutely continuous proba-

bility measures νL, νR ∈ ∆(Z)2 that have full support, are aligned with µL, µR, and

satisfy r(s(z)) = 1/(1 + dνR

dνL
(z)) for all z ∈ Z.

The first part of Lemma 15 implies that F ω
p (r(s)) = F ω

s (s) for all s ∈ supp(Fs) and

suppFp = r(suppFs). Similarly, Gω
p (r(s)) = Gω

s (s) for all s ∈ suppGs and suppGp =

r(suppGs).

Proof. First establish part (i). Let (νL, νR) ∈ ∆(Z)2 be mutually absolutely continuous

probability measures that have full support and are aligned with (µL, µR). Define the

mapping r : suppFs → [0, 1] as r(s(z)) = p(z), where p(z) ≡ 1/(1 + dνR

dνL
(z)). This is

a function since if s(z) = s(z′), then p(z) = p(z′), which establishes existence. For any

45Note that if GLs is a c.d.f. and
∫ 1

0

(
1−r(s)
r(s)

)
dGLs = 1, then it must be that r(sup suppFs) > 1/2

and r(inf suppFs) < 1/2.
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z such that s(z) > s(z′), p(z) = r(s(z)) > p(z′) = r(s(z′)) since (νL, νR) is aligned.

Therefore, r is strictly increasing on suppFs.

By the Bayesian constraint, it must be that Eν [p(z)] = 1/2, where the expectation

is taken with respect to (νL, νR). Given that (µL, µR) are informative and aligned with

(νL, νR), it cannot be that p(z) = 1/2 for all z ∈ Z. Therefore, there exist z, z′ ∈ Z such

that p(z) > 1/2 and p(z′) < 1/2, which implies that there exist s, s′ ∈ suppFs such that

r(s) > 1/2 and r(s′) < 1/2. Given that r is strictly increasing in s, it immediately follows

that r(inf suppFs) < 1/2 and r(sup suppFs) > 1/2. Define GL
s (x) ≡ νL(z|s(z) ≤ x).

Then GL
s is the distribution of s under measure νL. Given {r,GL

s }, GR
s is uniquely

pinned down by

GR
s (x) =

∫ x

0

(
1− r(s)
r(s)

)
dGL

s (s)

for any x ∈ suppFs.

Next, show part (ii). Let r : suppFs → [0, 1] be a strictly increasing function and

let c.d.f. GL
s be the distribution of s under measure νL, with suppGL

s = suppFs and∫ 1

0

(
1−r(s)
r(s)

)
dGL

s = 1. By Lemma A.1 in Smith and Sorensen (2000), the distribution of

s under measure νR is uniquely determined by

GR
s (x) =

∫ x

0

(
1− r(s)
r(s)

)
dGL

s (s).

Since GR
s has Radon-Nikodym derivative 1−r(s)

r(s)
, it induces posterior belief r(s) after ob-

serving signal z from set of signals Z = {z|s(z) = s} that lead to correctly specified

posterior s, for any s ∈ suppFs. If any other distribution induced the same posterior be-

liefs, then it would also have Radon-Nikodym derivative 1−r(s)
r(s)

, so it would be equivalent

to GR
s . Since 1−r(s)

r(s)
> 0 and GR

s (1) = 1, GR
s is a probability distribution.

Define the random variable S = s(z). Gω
s defines a probability measure over this

random variable in state ω. For any measurable set A ⊆ Z, define

νω(A) =

∫
E(1A|S)dGω

s ,

where E is the conditional expectation defined with respect to µL. By the uniqueness

and additivity of conditional expectation, for any disjoint, measurable sets A,B ⊆ Z,

νω(A ∪B) =

∫
E(1A∪B|S)dGω

s =

∫
(E(1A|S) + E(1B|S))dGω

s = νω(A) + νω(B),

so νω is a measure. For any set A, if νL(A) = 0, then νR(A) = 0 and vice versa, since

the integrand used to define νR is strictly positive. Therefore, the distributions (νL, νR)
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are mutually absolutely continuous with common support supp ν. Also, supp ν = suppµ

by construction, so the measures have full support on Z. Moreover, since F ω
s is unique,

νω is unique up to the probability measure that is used to evaluate E(·|S). For any

measurable set A ⊆ Z,

νR(A) =

∫
E(1A|S)

(
1− r(S)

r(S)

)
dGL

s =

∫
A

(
1− r(s(z))

r(s(z))

)
dνL(z),

where the first equality follows from the definition of GR
s and the second equality follows

from the definition of νL, so these distributions induce the correct posterior beliefs.

Finally, νL(Z) =
∫ 1

0
dGL

s (s) = 1 and νR(Z) =
∫ 1

0
dGR

s (s) = 1, so these are indeed

probability measures.

Finally, show part (iii). Suppose r : suppFs → [0, 1] is a strictly increasing function

with r(inf suppFs) < 1/2 and r(sup suppFs) > 1/2. Fix any distribution G with support

suppFs ∩ {s|r(s) < 1/2}. Then
∫ 1

0

(
1−r(s)
r(s)

)
dGs(s) < 1. Similarly, fix a distribution Ĝ

with support suppFs ∩ {s|r(s) ≥ 1/2}. Then
∫ 1

0

(
1−r(s)
r(s)

)
dĜ(s) > 1. For any λ ∈ [0, 1],

let Gλ be the distribution of the compound lottery Gλ = λG + (1 − λ)Ĝ. This lottery

draws signals from G with probability λ and Ĝ with probability (1 − λ). The function

H(λ) ≡
∫ (1−r(s)

r(s)

)
dGλ is a continuous mapping from [0, 1] to R, so by the intermediate

value theorem, there exists a λ∗ ∈ (0, 1) such that
∫ (1−r(s)

r(s)

)
dGλ∗ = 1. Let GL =

Gλ∗ . Then GL is a probability distribution, since it is the convex combination of two

distributions. By construction, suppGL
s = suppFs and

∫ 1

0

(
1−r(s)
r(s)

)
dGL

s = 1. Therefore,

from part(ii), it is possible to construct the desired probability measures (νL, νR). �
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D Supplemental Appendix: Examples of Nested Models

This framework directly nests Bohren (2016). There are two types: a sociable type θ1

and an autarkic type θ2. The sociable type has a misspecified model of the frequency of

the autarkic type. Mapping the notation from Bohren (2016) to this paper, p = π(θ2) is

the true share of autarkic types, and p̂ = π̂1(θ2) is θ1’s belief about the share of autarkic

types. Both agents have a correct model of the signal distributions and preferences.

It is simple to extend the model in this paper to allow agent’s misspecified models

to depend on their own beliefs. In particular, an agent’s misspecified model can be a

continuous function (FL, FR, GL, GR, u, π) : [0, 1]→ ∆([0, 1])4×R|A|×∆(Θ) that maps

from type i’s current belief to the misspecified model they use for updating at this belief.

This allows us to apply the techniques developed in this paper to analyze boundedly

rational models of several other papers, including Rabin and Schrag (1999) and Epstein

et al. (2010).

D.1 Confirmation Bias: Rabin and Schrag (1999)

Rabin and Schrag (1999) examines individual learning with confirmation bias. Agents

receive a binary signal, but if they receive a signal that goes against their prior beliefs

then with probability q they misinterpret that signal as the other signal (which agrees

with their prior belief). In order to nest this model, a slight extension must be made

to the framework we’ve outlined. In particular, this the mapping ρ to be able to map

two public signals that induce the same posterior to different misspecified beliefs. It is

straightforward to extend all arguments made in this paper to this case.

This is a misspecified model with one type θ. There are 4 public signals yL1 , yL2 , yR1 ,

yR2 . All L signals induce the same posterior and all R signals induce the same posterior.

Conditional on seeing an L signal, yL2 is draw with probability q. Similarly, conditional

on seeing an R signal yR1 is drawn with probability q. Assume Pr(yL1 or yL2|ω = L) =

Pr(yR1 or yR2|ω = R) = σ̄ > 1/2. As before, let σ(y) be the posterior belief a correctly

specified type would have if they received signal y. The misspecification is as follows,

if λ < 1, then ρ(yL2) = σ(yR1) and all other signals are interpreted correctly. If λ > 1

then ρ(yR1) = σ(yL2) and all other signals are interpreted correctly.

To complete the model, assume that public signals are the only source of information

and they are informative (i.e. private signals are uninformative, are believed to be

uninformative, and σL > 1/2). An agent’s beliefs about how other agents interpret

public signals is irrelevant, as there is no additional information contained in actions.

Agents choose actions a ∈ {L,R} and receive utility u(a, ω) = 1a=ω.

This misspecification captures a model where an agent skews evidence that goes

against his prior towards his prior belief. If an agent believes that it is more likely that

the state is L than R, whenever he receives a signal that favors state R with probability
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q it is signal yR1 , which he interprets as being an L signal instead of an R signal.

The parameter q indexes the degree of confirmation bias. Higher q means it is

more likely that agents misinterpret signals that go against their prior. Under this

specification,

γ(0, R) = (1− q)
(
σ̄ log

(
1− σ̄
σ̄

)
+ (1− σ̄) log

(
σ̄

1− σ̄

))
+ q log

(
σ̄

1− σ̄

)
.

and

γ(∞, R) = (1− q)
(
σ̄ log

(
1− σ̄
σ̄

)
+ (1− σ̄) log

(
σ̄

1− σ̄

))
+ q log

(
1− σ̄
σ̄

)
.

As q increases, more weight is placed on the last term, which is negative when λ = 0

and positive when λ = ∞. So when the degree of confirmation bias is sufficiently high

agents learn the correct state and incorrect state with positive probability. If the degree

of confirmation bias is sufficiently severe agent’s are susceptible to falling into traps,

initial signals that go against the true state are hard to overturn due to confirmation

bias. As soon as the prior favors one state or the other, most of the signals start to

confirm that prior. Beliefs become entrenched and are hard to overturn.

In addition to this model presented originally in Rabin and Schrag (1999), our frame-

work allows us to analyze potentially richer forms of confirmation bias. For instance, the

confirmation bias in Rabin and Schrag (1999) is relatively extreme, agents misinterpret

information in exactly the same way if they are almost convinced that the state is L or

if they only believe state L is ε more likely than state R. Perhaps in smoother models

of confirmation bias, incorrect learning would be impossible.

Suppose there are 4 public signals yL1 , yL2 , yR1 and yR2 that are drawn with the

same frequency as in the preceding example. But now the misspecification is as follows

ρ(y, p) =



σ(y) if y ∈ {yL1 , yR2}

σ(y) if y = yL2 and p ≥ 1/2

σ(y) if y = yR1 and p ≤ 1/2

σ(y) + %(p)(σ(yR1)− σ(y)) if y = yL2 and p < 1/2

σ(y) + %(p)(σ(yL2)− σ(y)) if y = yR1 and p > 1/2

where % : [0, 1] → [0, 1] is a continuous function with %(0) = %(1) = 1. As before,

confirmation bias is more severe the higher q is, the probability that signals in favor of

one state are missinterpreted as signals in favor of the other. But now %(·) allows the

degree of confirmation bias to depend the degree to which the prior favors the state,
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weighting how much the signal is shifted towards the signal that favors the other state

of the world. If % is strictly decreasing on [0, 1/2] and strictly increasing on [1/2, 1], then

the bias becomes more severe as the agent’s prior becomes more extreme. The model of

Rabin and Schrag (1999) corresponds to the case where % is constant and equal to 1.

Using the tools developed in this paper, one can verify that the possibility of the

long-run incorrect learning is independent of the shape of %(·), so the extreme form of

confirmation bias present in Rabin and Schrag (1999) is not driving the possibility of this

long run outcome. No matter the form % takes, confirmation bias leads to entrenchment.

Agents underweight information that does not confirm their current beliefs. This can

lead to traps; if agents reach a sufficiently extreme belief in favor of one state, they’ll skew

information so that much it becomes almost impossible to overturn their preconception.

Proposition 6. Suppose ω = R. There exists a unique cutoff q̄ = 1− 1/(2σ̄) < 1 such

that for any % : [0, 1]→ [0, 1], continuous with %(0) = %(1) = 1, if

1. If q < q̄ then learning is correct almost surely.

2. If q > q̄ then both correct and incorrect learning occur with positive probability,

and beliefs converge almost surely.

This cutoff is the same as the cutoff in Rabin and Schrag (1999) for all %(·), which is

driven by a combination of the continuity of % at 0 and 1 and %(0) = %(1) = 1. Whenever

%(p) = 1, at that belief p agents update exactly like they would update in Rabin and

Schrag (1999), so there will always be a neighborhood of belief near each stationary

point where the model behaves sufficiently similarly to the model of Rabin and Schrag

(1999). So, as in that model, this neighborhood becomes a trap, beliefs that enter it

become entrenched no matter what the true state of the world is and incorrect learning

occurs with positive probability.

While possibility of the long-run incorrect learning is independent of %, the proba-

bility of each long-run outcome depends crucially on it. Intuitively, a larger % amplifies

the impact of early signals, which in turn makes it harder to overturn beliefs that even

mildly favor the incorrect state.

In Figure 4 smaller x corresponds to more severe confirmation bias, since decreasing

x increases the weight placed on the signal that favors the other state of the world. A

higher x reduces the degree to which missperceived signals are skewed, and thus makes

incorrect learning less likely. x = 0 corresponds to the extreme form of confirmation

bias present in Rabin and Schrag (1999).
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Figure 4. %(p) = (2|p− 1/2|)x, σ̄ = 3/8

Proof of Proposition 6. Suppose ω = R. Then

γ(0, R) = (1− q)
(
σ̄ log

(
1− σ̄
σ̄

)
+ (1− σ̄) log

(
σ̄

1− σ̄

))
+ q log

(
σ̄

1− σ̄

)
and

γ(∞, R) = (1− q)
(
σ̄ log

(
1− σ̄
σ̄

)
+ (1− σ̄) log

(
σ̄

1− σ̄

))
+ q log

(
1− σ̄
σ̄

)
since %(1) = %(0) = 1 so ρ(yL2 , 0) = 1 − σ̄ and ρ(yR1 , 1) = σ̄. As q increases, γ(0, R)

decreases and γ(∞, R) increases, At q = 0, agent’s have the correctly specified model,

so γ(0, R) < 0 and γ(∞, R) < 0. As q → 1,

γ(0, R)→ log

(
σ̄

1− σ̄

)
< 0

and

γ(0, R)→ log

(
1− σ̄
σ̄

)
> 0

so the desired cutoffs exist.

D.2 Over/underweighting: Epstein et al. (2010)

Epstein et al. (2010) considers an individual learning model where agents overweight

beliefs towards the prior or towards the posterior. Specifically, an agent with prior p

who would update her beliefs to BU(p) instead updates to

(1− α)BU(p) + αp
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for some α ≤ 1. When α = 0, this is the correct model, for α > 0 agents overweight

the prior and for α < 0, agents overweight new information. For simplicity of notation,

suppose that Pr(σL|ω = R) = Pr(σR|ω = L) = σ < 0.5. In our framework, this is a

model with a single agent type who only receives public signal σ and maps this signal

to

ρ(σ, p) =

σ(1−α)
(1−σ)(1−p)+ps + α

1
1−p + 1−2p

1−p

(
σ(1−α)

(1−σ)(1−p)+pσ + α
) ,

with

ρ(σ, 1) =
σ

(1− α)(1− σ) + (1 + α)σ
,

which implies that ρ(σ, 1) = limp→1 ρ(σ, 1).46

Under this misspecification, whenever an agent with prior pt updates their beliefs,

the likelihood ratio becomes

λt+1 =

ptσ(1−α)
(1−σ)(1−pt)+ptσ + αpt

1− ptσ(1−α)
(1−σ)(1−pt)+ptσ − αpt

.

Therefore, the Bayes update is

pt+1 =
ptσ(1− α)

(1− σ)(1− pt) + ptσ
+ αpt.

Therefore, the update rule from Epstein et al. (2010) can be represented in our frame-

work.

Under this specification, the likelihood ratio update is

λt+1/λt =

σ(1−α)
(1−σ)(1−pt)+ptσ + α

(1−α)(1−σ)
(1−σ)(1−pt)+ptσ + α

As p→ 1, the likelihood ratio update conveges to

1

(1− α)1−σ
σ

+ α

46Epstein et al. (2010) does not identify how signals are interpreted at 0 or 1, since beliefs are
stationary at these points. In order to characterize asymptotic outcomes, the tools developed in this
paper show ho the limit of the update rule as p → 0 or 1 can be used to characterize asymptotic
outcomes of the model in Epstein et al. (2010).
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and as p→ 0, the likelihood ratio update converges to

σ(1− α)

1− σ
+ α

In an environment with symmetric binary signals,

γ(0, R) = σ log[(1− α)
1− σ
σ

+ α] + (1− σ) log[(1− α)
σ

1− σ
+ α],

and

γ(∞, R) = σ log
1

(1− α) σ
1−σ + α

+ (1− σ) log
1

(1− α)1−σ
σ

+ α
.
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