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Abstract

We propose a new nonlinear model of social interactions. The model allows point
identification of peer effects as a function of group means, even with group level fixed
effects. The model is robust to measurement problems resulting from only observing a
small number of members of each group, and therefore can be estimated using standard
survey datasets. We apply our method to a national consumer expenditure survey
dataset from India. We find that each additional rupee spent by one’s peer group
increases one’s own perceived needs by roughly 0.5 rupees. This implies that if I and
my peers each increase spending by 1 rupee, that has the same effect on my utility
as if I alone increased spending by only 0.5 rupees. Our estimates have important
policy implications, e.g., we show potentially considerable welfare gains from replacing
government transfers of private goods with the provision of public goods.

Keywords: Consumption; Peer Effects; Social Interactions; Keeping Up With the
Jones; Consumer Demand; India.
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1 Introduction

Identification of models with peer effects typically rely on either exogenous variation in
group composition (Duflo, Dupas and Kremer, 2011; Carrell, Fullerton and West, 2009) or
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size (Lee, 2007), or detailed network data (Bramoullé, Djebbari and Fortin, 2009; de Giorgi,
Frederiksen, and Pistaferri, 2016). In this paper, we introduce a model with peer effects in
group means that allows for random or fixed effects at the group level, and does not require
any of these features typically used to gain identification. As a result, our model can be
estimated using standard cross section data sets that lack detailed network information. For
example, our empirical application uses repeated cross section household consumer expendi-
ture survey data (of the type collected by many countries for the construction of consumer
price indices). A common feature of such surveys is that only a tiny fraction of the total
population is sampled, so we observe only a modest number of members of each group.
We obtain point identification by exploiting nonlinearities in the model, and demonstrate
consistency even when the number of observations per group is fixed and small.

Consumer demand estimation is a natural application of our model. Engel curves have
long been known to be nonlinear (Deaton and Muellbauer, 1980), and there is evidence
for peer effects in consumption (Boneva, 2013). In our keeping-up-with-the-Joneses type
model, one’s perceived required expenditures, or “needs,” depend on, among other things,
the average expenditures of one’s peer group. The higher are these perceived needs, the
more one needs to spend to attain the same level of utility. Consistent with other empirical
evidence (e.g., Luttmer, 2005), we find that consumers lose utility from feeling poorer when
their peers get richer. However, because our demand model is derived from a utility function
using the standard tools of consumer choice, we can quantify the magnitude of peer effects in
money-metric utility terms, permitting associated welfare calculations and policy analyses.

We implement the model with standard national consumer expenditure survey data from
India, and find that each additional rupee spent by peers increases perceived needs by roughly
0.5 rupees. These results have many implications for policy. For example, they may provide
a structural explanation for the Easterlin (1974) paradox of low correlation between growth
in aggregate incomes and growth in reported well-being. If perceived needs ratchet up along
with incomes, aggregate income gains do less to improve utility than idiosyncratic income
gains.

These results also imply that income or consumption taxes that apply to all members of a
group are roughly half as expensive in terms of social welfare than one would calculate in the
absence of peer effects. Similarly, half of the potential utility gains from transfer programs
can be lost due to peer effects that increase perceived needs. We apply these results in
a rough calculation to suggest that replacing the National Food Security Act in India (a
program that subsidizes expenditures on cereals such as rice) with more generous provision
of public goods like education or cleaner air and water, could increase money metric welfare
by billions of rupees a year at no additional cost.
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Our analysis proceeds as follows. In the next subsections we give an overview of our
model, and review the literature on peer effects and needs, and show how our model incor-
porates peer effects and needs into demand functions. In Section 2 we prove identification of
simplified generic version of our peer effects model, and we provide associated estimators. In
Section 3 we apply the generic model to expenditure data from the Indian National Sample
Survey (NSS) data, estimating the dependence of household-level expenditures on luxuries
on household total expenditures and peer-group average expenditures on luxuries. These
results show peer effects are present, but do not relate them to utility. We also analyze
the effects of own and peer expenditures on answers to a life satisfaction question (which
we interpret as a crude proxy for utility) from a separate data set. Taken together, these
preliminary analyses indicate that increased luxury expenditures by one’s peers increases
one’s own luxury spending, and increased total expenditures of of one’s peers decreases one’s
own level of reported utility.

Both economic theory and these non-structural empirical results then motivate our con-
struction of a structural model in which needs depend on the spending of one’s peers. This
model is described in Section 4. Exploiting revealed preference theory, in Section 5 we de-
rive quantity demand functions associated with this utility model. These demand functions
have a similar structure to our generic model, though both the dependent variables and the
group-average variables become quantity vectors instead of scalars, the scalar peer effect
parameter is replaced by a matrix of own and cross equation peer effects, and what appear
as constant parameters above are replaced with nonlinear functions of prices and observable
demand shifters. Given this analogous structure to our generic model, we prove identification
of these demand functions using the same techniques as before, and we provide an associated
estimator.

In Section 6 we implement this structural demand model and provide associated welfare
analyses, now using multiple annual NSS annual cross-sections of household-level expenditure
data. Section 7 discusses policy implications of our estimates, and Section 8 concludes.
Throughout, we relegate formal derivations and proofs to the appendix.

1.1 Generic Model Overview

Before considering utility structure and needs, here we introduce a simplified or generic
version of our model. To fix ideas, consider a typical peer effects model relating an outcome
yi for person i in group g with a covariate xi which we can write as

yi = yga+ xib+ ui, (1)
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where ui is an error term uncorrelated with the covariate, the pair (a, b) are parameters to
estimate, and yg is the population mean value of yj over all people j in person i’s peer group
g (see, e.g., Manski 1993, 2000 and Brock and Durlauf 2001). In contrast, the type of model
we consider has the form

yi = (ŷga+ xib)
2 d+ (ŷga+ xib) + vg + ui + εgi, (2)

where ŷg is an estimate of yg, the term vg is a group level fixed or random effect, and εgi is
an additional error that arises due to estimation error from the econometrician needing to
replace yg in the true model with an estimate ŷg.

Equation (2) differs from equation (1) in three important ways. First, the model contains
a group-level error vg. We show identification of the model even if vg is a group level fixed
effect. In contrast, typical models like equation (1) cannot be identified in the presence of
fixed effects, unless one has specialized data including observable network structures like “in-
transitive triads.” See, e.g., Bramoullé, Djebbari, and Fortin (2009), Jochmans and Weidner
(2016), and de Giorgi, Frederiksen, and Pistaferri (2016).

Second, our model is nonlinear. In our empirical application, this nonlinearity is an
unavoidable consequence of utility maximization. However, it is precisely this nonlinear
structure that enables identification in the presence of fixed effects. In particular, the coef-
ficient a can be identified from the xiŷg interaction in the quadratic term of equation (2),
which is not eliminated when we first difference to remove vg. With random effects, this
nonlinearity is still helpful but not required for our identification.

Third, because we only have survey data with a modest number of observations for each
group, we do not assume we can observe the true yg even asymptotically. We therefore replace
yg with its estimate ŷg, and this introduces the additional error term εgi that is correlated
with yga+xib and its square. Part of the novelty of our methodology comes from overcoming
these correlations to construct valid moment conditions used for GMM estimation of the
model. Our model is potentially applicable to many contexts with nonlinear peer effects,
and may be of particular use when the researcher only observes a relatively small number of
members of each peer group (for example, with typical government survey data).

1.2 Literature and Overview of Peer Effects in Consumption and

Needs

There is a long literature that connects utility and well-being to peer income or consumption
levels (see, e.g., Frank 1999, 2012). The Easterlin (1974) paradox asserts an empirical
connection between well-being and national average incomes. Though the strength of this
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connection is debated (Stevenson and Wolfers 2008), the correlation between utility and
national-level consumption, ceteris paribus, is negative. Ravina (2007) and Clark and Senik
(2010) regress self-reported utility on own budgets and national average budgets, and other
correlated aggregate measures like inequality, and find that the negative correlation still
stands. Similar results hold for much smaller reference groups; Luttmer (2005) finds that an
increase of the average income in one’s neighbors reduces self-reported well being.

The possible mechanisms for this are varied. Veblen (1899) effects make consumers value
consumption of visible status goods. Reference-dependent utility functions hinge preferences
on own-endowments (Kahneman and Tversky 1979). More recent work on these models has
led to reference-dependence that is “other-regarding,” where utilities depend on reference
points that are driven by other agents’ decisions or endowments. Models of “keeping up
with the Joneses” have one’s own consumption feel smaller when one’s peers consume more.
Surveys of this literature include Kahneman (1992) and Clark, Frijters, and Shields (2008).1

In our paper, we model the consumption of our peers as affecting what we perceive as our
consumption “needs”.

A more recent literature connects consumption choices to peer consumption levels, al-
though these analyses are essentially nonstructural. For example, Chao and Schor (1998)
regress individual cosmetics spending on group-average cosmetics spending and find positive
responses, linking their findings to Veblen effects. Boneva (2013) regresses household quan-
tity demand vectors on household budgets (total expenditures) and on the average budgets
of reference groups, using the randomized Progresa rollout to instrument for group averages.
De Giorgi, Frederiksen and Pistaferri (2016) show that consumption choices depend on peer
consumption levels, using neighbors-of-neighbors as instruments. All these papers suggest
that the magnitudes of peer effects in consumption choices are large.

Taken together, these results suggest that a structural model of peer effects in consump-
tion choices should start with a utility function that depends both on own-consumption and
on peer consumption. That is, direct utility depends on qi and qg, where g denotes the peer
group of consumer i, qi is the vector of quantities of goods consumed by consumer i, and qg

is the mean consumption vector of all consumer’s in group g. This in turn implies indirect
utility functions of the form

ui = Ṽ (p, xi, zi,qg),

where ui is utility, or well-being of consumer i, p is the vector of prices of goods, zi is a
1A smaller peer effects literature focuses on intertemporal models of aggregate behaviour, intended to

address macroeconomic puzzles. See, e.g., Gali (1994) or Maurer and Meier (2008). At the other extreme,
some papers in psychology and marketing focus on how the valuation of particular individual goods or brands
depend on one’s peers. See, e.g., Rabin (1998) and Kalyanaram and Winer (1998).
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vector of characteristics that affect tastes, and xi = p′qi is consumer i’s budget, or total
expenditures.

In our model, peer consumption qg affects needs. In the context of utility and cost
functions, “needs” are fixed costs, representing the minimum quantity vector one requires to
start getting utility. The idea that preferences have fixed costs that need to be met before
expenditures start increasing utility goes back to Samuelson (1947). Samuelson defined
the quantity vector fi as the “necessary set” of goods. The cost of buying these necessary
goods, i.e. needs, is p′fi. Samuelson then defined xi−p′fi as “supernumerary income,” one’s
remaining income after subtracting off the cost of these needs. Utility is then obtained by
spending supernumerary income.

The classic Stone (1954) and Geary (1949) linear expenditure system incorporates this
construction. More generally, Gorman (1976) showed that these kind of fixed costs (which
he calls “overheads”) can be introduced into any utility function and will generally vary
across consumers. This structure for dealing with heterogeneity in needs is typically used to
account for demographic characteristics z.

In Gorman’s model, utility depends on xi only through the term xi−p′fi, where fi = f(zi)

is a function of demographic characteristics. Blackorby and Donaldson (1994) show that
models of this type have a desirable property for social welfare calculations, which they
call Absolute Equivalence Scale Exactness (AESE).2 In particular, changes in the cross-
population sum of income - needs (also known as equivalent income),

∑
i xi−p′fi, are a dollar

measure of changes in social welfare. Increases in societal income are thus straightforward to
measure in welfare terms. We will allow needs fi to depend on a qg, so a technology change
that raises everyone’s after tax income xi by 10% would be offset by the associated change
in p′fi, reflecting the social cost of keeping up with the Joneses.

Our model begins with Blackorby and Donaldson, but then adds peer effects by including
qg in the needs vector fi, so

ui = V (p, xi − p′fi) with fi = f(zi,qg) (3)

For simplicity we take the function f to be linear, so

fi = Aqg + Czi (4)

2Blackorby and Donaldson (1994) start from a more general model where utility has the form ui =
h [V (p, xi −H (p, zi)) , zi] for some functions h and H. In the Gorman model context where H (p, zi) = p′fi,
their results imply that if h is independent of zi, then x − p′fi will be a money metric for utility, and all
transformations h that are independent of zi result in money metrics that are not additive in p′fi. They
also derive results on identification associated with this model, showing when social welfare functions can be
constructed based on differences between budgets and needs.
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for some matrices of parameters A and C.
If ui were observable, then one could directly estimate equation (3). Luttmer (2005)

estimates a model where self reported well-being (on a 1 to 7 scale) is a function of xi −
δp′qg. If we interpret this discrete self reported well-being as a crude measure of utility ui,
then Luttmer’s model corresponds to a special case of our model in which the matrix A

equals the scalar δ times the identity matrix. In a preliminary data analysis, we perform
an analogous exercise using the World Value Survey from India, which contains a similarly
crude subjectively reported measure of well-being. Both Luttmer’s estimates and our own
preliminary analysis find that ui is increasing in xi and decreasing in p′qg, consistent with
our interpretation of peer effects as increasing perceived needs, making one’s utility go down
as peer expenditures go up.

Our main structural analysis does not assume utility is observable. We instead derive
quantity demand equations from (3) that express consumption demands as a function of
observables only, allowing us to back out the parameters A and C. Specifically, applying
Roy’s (1947) identity to equation (3) yields demand functions of the form

qi = g(p, xi − p′fi) + fi (5)

where the functional form of the vector valued function g depends only on the functional
form of V . We will identify and estimate demand functions given by equations (5) and (4),
with the addition of error terms that also include random or fixed effects.

The link between the demand model in Equation 5 and the simpler peer effects model
described earlier can be seen by replacing the simple linear term xi + yga from before with
xi−p′

(
Aqg + Czi

)
and taking g to be quadratic in this term. As in the simpler peer effects

model, we will need to replace qg with an estimate q̂g, and deal with the same identification
and estimation issues discussed earlier.

Equation (3), and the demand functions (5) derived from it, imply that higher levels of
peer expenditures first-order increase own expenditure qi, but decrease utility ui. Although
not incorporated into this model, it is possible that these negative externalities of peer
effects could be offset by an increase in utility due to network effects. For example, the
value of a cell phone can be increasing in the number of your peers who also own one,
generating a positive relationship between own and group ownership. However, we think that
network effects are unlikely to explain our results, for two reasons. First, our consumption
categories are large and mostly contain items not associated with peer effects. For example,
the luxuries in our model consist of items like types of food, hygiene products, and personal
transportation. Second, both Luttmer’s estimates and our ownWorld Value Survey estimates
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mentioned above provide direct evidence of increased peer expenditures decreasing rather
than increasing utility. Finally, it should be noted that network effects could also produce
negative as well as positive additional externalities, such as congestion effects from increased
traffic on public roads.

The class of demand specifications given by equations (5) has a shape invariance in
quantities property described by Pendakur (2005). This property has the testable implication
that, for any price vector p, the quantity demand curve associated with any good j has the
same shape across consumers, differing only by horizontal and vertical translations in x and
q, respectively. This property is analogous to the more well known shape invariance in budget
shares popularized by Pendakur (1999), Blundell, Chen and Kristensen (2007) and Lewbel
(2010). A long literature in empirically modeling consumer demand shows that demands are
nonlinear and well-approximated by polynomials (see, e.g., Deaton and Muellbauer 1980,
Banks, Blundell and Lewbel 1998, and Blundell, Chen and Kristensen 2007), mirroring our
identification conditions and modeling assumption.

1.3 Relevant Literature on Identification of Peer Effects

Our model, where each individual’s outcome depends on the mean of the outcomes of one’s
peer group, is a form of social interactions model. It can also be interpreted as a spatial
model, where all individuals within a group are equidistant from each other. A well known
obstacle to identification of this kind of model is the reflection problem, originally described
by Manski (1993, 2000), and expanded on by Brock and Durlauf (2001), and Blume, Brock,
Durlauf, and Ioannides (2010). Our model has a specific behaviorally derived structure that
overcomes the reflection problem.

In some peer effects models, network information is available that can help identification.
For example, Bramoullé, Djebbari, and Fortin (2009) show identification of peer effects in
social networks exploiting so-called "intransitive triads," essentially using data from friends
of friends as instruments. Davezies et. al, (2006) and Lee (2007) use variation in group
sizes to aid identification. In our context, making use of standard consumption survey data,
we do not have any information on who friends of friends are. We similarly cannot exploit
variation in group size for identification, because we only see a small number of members of
each group, and because we do not know actual group sizes.3

The interactions of peer group members may be modeled as a game. Suppose there
is private information that cannot observed by econometricians. We assume that group

3Furthermore, identification from variation in group sizes generally has power only for relatively small
groups like classrooms. In our context, with groups potentially containing thousands of individuals, it is
unlikely that this approach would work even if we had outside knowledge of true group sizes.
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members have utility functions that depend on peers only through the true mean of the peer
group’s outcomes. If group members also all observe each other’s private information and
make decisions simultaneously (corresponding to a complete information game), then each
individual’s actual behavior will only depend on others through the group mean. Complete
games are generally plausible only when the size of each group is small, and are typically
estimated assuming the econometrician’s data includes all members of each observed group.
An example is Lee (2007). However, in our case the true group sizes may be large, but we only
observe a small number of members of each group. An alternative model of group behaviour is
a Bayes equilibrium derived from a game of incomplete information, in which each individual
has private information and makes decisions based on rational expectations regarding others.
This type of incomplete game of group interactions can result in the reflection problem again,
where endogenous effects, exogenous effects, and the correlated effects cannot in general
be separately identified. In either type of game there is also the potential problem of no
equilibrium or multiple equilibria existing, resulting in the problems of incompleteness or
incoherence and the associated difficulties they introduce for identification as discussed by
Tamer (2003).

We do not take a stand on whether the true game in our case is one of complete or
incomplete information. We assume only that players are basing their behavior on the
true group means. This is most easily rationalized by assuming that consumers either have
complete information, or can observe a sufficiently large number of members in each group
that their errors in calculating group means are negligible. A more difficult problem would
be allowing for the possibility that group members may, like the econometrician, only observe
group means with error. We do not attempt to tackle this issue. Doing so would require
modeling how individuals estimate group means, how they incorporate uncertainty regarding
group means into their purchasing decisions, and showing how all of that could be identified
in the presence of the many other obstacles to identification that we face. These obstacles
include the reflection problem, only observing a small number of members of each group,
group level fixed effects, nonlinearities resulting from utility maximization, and a multiple
equation system where each equation depends on the vector of peer means from all of the
other equations.

Identification depends on what we assume is observable from data. Standard models of
within group interactions with large groups assume that there are no interactions between
groups, and that both the number of groupsG and the number of observed members ng within
each group goes to infinity. However, for reasonable definitions of peer groups, standard
consumer expenditure surveys only sample a relatively small number of individuals within
each group. For example, even in our relatively large Indian data set, ng is less than two
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dozen for most groups. So while it is reasonable to assume that G goes to infinity (G > 1000

in our data), we take a new approach to identifying and estimating peer effects by assuming
that ng is small and fixed. This means that observed within group sample averages are
mismeasured estimates of true within group means, and that these measurement errors do
not disappear asymptotically as the sample size grows with G. Moreover, these measurement
errors are by construction correlated with individual specific covariates and error terms.

Measurement error more broadly has long been recognized as potentially important in
social interactions models. See, e.g., Moffitt (2001) and Angrist (2014), though their work
focuses on standard issues of mismeasurement in regressors, recognizing that, unlike in ordi-
nary models, outcomes are also regressors and hence measurement error in outcomes matters.
This is quite different from our situation, which recognizes that only observing a limited num-
ber of individuals in each group results in measurement errors in group means. This can
also be interpreted as a missing data problem where what is missing is the outcomes of most
group members. Others have looked at different missing data problems in peer models. For
example Sojourner (2009) considers peer effects in Project STAR classrooms, where the miss-
ing data consists of pre-intervention information on student achievement. In his model, the
difficulties of missing data are addressed in part by assuming a linear model where students
are randomly assigned to their peer groups, defined as classrooms.

As is standard in models with measurement errors, we will need to obtain valid instru-
ments that are correlated with true group means. However, even with instruments, the
obvious two stage least squares or GMM estimator that assumes model errors are uncor-
related with instruments (after replacing true group means with their sample analogs) will
not be consistent in our context. This is because such instruments cannot overcome the
reflection problem, and because our model is nonlinear, containing interaction terms be-
tween the measurement errors and the true regressors. An analogous problem arises in the
polynomial model with measurement errors considered by Hausman, Newey, Ichimura, and
Powell (1991). We show that overcoming these issues requires some novel transformations
that ultimately lead to a valid GMM estimator.

Finally, even given complete identification of model parameters, the Blackorby and Don-
aldson (1994) result discussed earlier still applies, namely, that only relative needs across
consumers are identifiable, not the absolute level of needs. However, this will suffice for all
of our welfare analyses.

10



2 Generic Model Identification

Before introducing our general model of peer effects in consumer demand, in this section
we consider a simple generic model where individual outcomes depend on group means. We
use this model to illustrate the obstacles to identification in our general context, show how
we overcome these obstacles, and show how we construct a corresponding estimator. This
generic model should be useful to other researchers in general applications where peer effects
are nonlinear, where fixed effects or random effects are present, and where only a small
number of individuals are observed in each group.

Here we summarize the main structure of our generic social interactions model, and the
associated logic of its identification and estimation. In the Appendix we provide detailed
assumptions regarding the model and a formal proof of its identification. Let i index in-
dividuals. Each individual i is in a peer group g ∈ {1, ...G}. The number of peer groups
G is large, so we assume G → ∞. In our data we will only observe a small number ng of
the individuals in each peer group g, so asymptotics assuming ng → ∞ would be a poor
approximation. We therefore assume ng is fixed and so does not grow with the sample size.

Let yi be an outcome which is affected by an observed scalar regressor xi (we later
generalize the model to allow y and x to be vectors of outcomes and of regressors). Denote
the group mean outcome yg = E (yi | i ∈ g), and similarly define xg. The general form of
our model is

yi = h
(
θ | yg, xi

)
+ vg + ui, (6)

where vg for g ∈ {1, ...G} are group level random or fixed effects, ui are mean zero errors,
independent of xi′ for all individuals i′, and θ is a vector of parameters to be identified and
estimated. The dependence of h on yg are the peer effects we want to identify. Note that
xg does not appear explicitly in this model, but, we have allowed for a fixed effect vg, which
could be an unknown function of both xg and of any other group level covariates. Although
excluding xg would solve the reflection problem in a model without vg, the problem is not
avoided by excluding xg in our model.

Suppose h were linear, i.e., suppose h
(
θ | yg, xi

)
equalled yga + xib. A constant term is

omitted here because it would trivially be included in vg. Then the peer effect, given by the
parameter a, could not be identified because we could not separate yg from vg. To overcome
this linear model nonidentification (and because there is substantial empirical evidence of
nonlinearity in our empirical application), we propose the nonlinear model

h (θ | ŷg, xi) =
(
yga+ xib

)2
d+

(
ygc+ xib

)
, (7)

11



where θ = (a, b, c, d).4

Now yg cannot actually be observed (even asymptotically, because we have assumed ng
is fixed), so we will need to replace it with some estimator. Let ŷg be an estimator of yg.
This introduces an additional error term εgi defined by εgi = h

(
θ | yg, xi

)
−h (θ | ŷg, xi), and

the model becomes

yi = (ŷga+ xib)
2 d+ (ŷgc+ xib) + vg + ui + εgi,

where
εgi =

(
yg − ŷg

)
a+

(
y2
g − ŷ2

g

)
a2d+ 2abd

(
yg − ŷg

)
xi.

Inspection of this equation shows a number of obstacles to identifying and estimating
θ. First, vg will in general be correlated with yg and hence with ŷg (this was the main
cause of nonidentification in the linear model). Second, since ng does not go to infinity, if
ŷg contains yi, then ŷg will correlate with ui. Third, again because ng is fixed, εgi doesn’t
vanish asymptotically, and is by construction correlated with some functions of ŷg and xi.
Equivalently, we can think of

(
yg − ŷg

)
and

(
y2
g − ŷ2

g

)
as measurement errors in yg and

y2
g, leading to the standard measurement error problem that mismeasured regressors are

correlated with errors in the model.
So, while nonlinearity overcomes the fundamental nonidentification of the linear model,

it introduces a host of other obstacles to identification that we need to overcome. We employ
two somewhat different methods for identifying the model, depending on whether each vg is
assumed to be a fixed effect or a random effect. For each case, we construct a set of moment
conditions that suffice to identify θ, and can be used for estimated via GMM (Generalized
Method of Moments, see Hansen 1982).

2.1 Generic Model Identification - Fixed Effects

We begin by looking at the difference between the outcomes of two people i and i′ in group
g.

yi − yi′ = h
(
θ | yg, xi

)
− h

(
θ | yg, xi′

)
+ ui − ui′

4As we discuss in the appendix, we could have started from the seemingly more general model yi =(
yga+ xib+ c

)2
d+
(
yga+ xib+ c

)
+vg+ui. However, this model turns out to be observationally equivalent

to the simpler form given in equation 7.
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This differencing removes the fixed effects vg. This also differences out the quadratic term
y2
ga

2 inside h. Define the leave-two-out group mean estimator

ŷg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

yl

This is just the sample average of y for everyone who is observed in group g except for the
individuals i and i′. Let ŷg from before be the estimator ŷg,−ii′ . Then

yi − yi′ = h (θ | ŷg,−ii′ , xi)− h (θ | ŷg,−ii′ , xi′) + ui − ui′ + εgi − εgi′ . (8)

We can then show (see Theorem 1 in the Appendix) that, with these definitions,

E (ui − ui′ + εgi − εgi′ | xi, xi′) = 0, (9)

which we can then use to construct moments for estimation of equation (8).
The intuition for this result can be seen by reexamining the obstacles to identification

listed earlier. The correlation of vg with yg and hence with ŷg,−ii′ doesn’t matter because vg
has been differenced out. ŷg,−ii′ does not correlate with ui or ui′ because individuals i and i′

are omitted from the construction of ŷg,−ii′ . Finally, we can verify that εgi − εgi′ is linear in
xi − xi′ , with a conditionally mean zero coefficient.

Equation (8) contains functions of ŷg,−ii′ , xi, and xi′ as regressors, and equation (9)
shows that we can use functions of xi and xi′ as instruments (equivalently, xi and xi′ are
exogenous regressors). An obvious candidate instrument for ŷg,−ii′ would be some estimate
x̂g of xg, the reason being that yi depends on xi and therefore the average within group value
of y should be correlated with the average within group value of x. The problem is that,
although E (εgi − εgi′ | xi, xi′) = 0, the error εgi − εgi′ will in general be correlated with xl

for all observed individuals l in the group other than the individuals i and i′. Note that this
problem is due to the assumption that ng is fixed. If it were the case that ng → ∞, then
εgi − εgi′ → 0, and this problem would disappear.

To overcome this final obstacle to identification in the fixed effects model (finding an
instrument for ŷg,−ii′), we require some other source of group level data. For example, in
our application xi is total consumption expenditures. A valid instrument for ŷg,−ii′ would
then be something that correlates with xg e.g., some measure of the average level of income,
wealth or socioeconomic status of the group, perhaps obtained from a different data set.

An alternative source of group level instruments is what we actually use in our empirical
application. Our data set, which is typical of consumption surveys, is repeated cross section
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data, where different consumers are sampled in each time period. Now εgi− εgi′ is correlated
with xl for individuals l in group g that we observed and used in constructing ŷg,−ii′ . But
εgi−εgi′ will not in general be correlated with other individuals, and in particular will not be
correlated with individuals that are observed in group g in other time periods (again, see the
appendix for details). We can therefore construct an instrument that correlates with xg by
taking the sample average of xl for individuals l who are observed in group g in other time
periods. These will be useful and valid instruments as long as group level total expenditures
xg are autocorrelated over time.

Let rg denote a vector of valid group level instruments for ŷg,−ii′ , constructed as above
either from other datasets or from other time periods. Combining these with equations (8)
and (9) then gives conditional moments

E [yi − yi′ − h (θ | ŷg,−ii′ , xi) + h (θ | ŷg,−ii′ , xi′) | xi, xi′ , rg] = 0.

Since it is easier to estimate models using unconditional moments, let rgii′ denote a vector
of functions of xi, xi′ , rg. Since h is quadratic, a natural choice of elements comprising rgii′

would be xi, xi′ , rg, and squares and cross products of these variables. We then have the
unconditional moments

E [(yi − yi′ − h (θ | ŷg,−ii′ , xi) + h (θ | ŷg,−ii′ , xi′)) rgii′ ] = 0. (10)

Theorem 1 in the Appendix extends this model to a vector xi, and proves that the parameters
θ are identified from these unconditional moments.

After plugging equation (7) for the function h into equation above, we obtain an expres-
sion that can immediately be used for estimation by GMM. For estimation, observations are
defined as every pair of individuals i and i′ in each group. By construction, the errors in
this model are correlated across observations within each group. It is therefore necessary
to estimate the model using clustered standard errors, where each group is a cluster (again,
details are provided in the Appendix).

In addition to extending the above model to allow for a vector of covariates xi, in the
Appendix we also show how the model extends to a J vector of outcomes yi, replacing the
scalar a with a J by J matrix of own and cross equation peer effects. Our utility-derived
demand model will also entail a vector of outcomes with a matrix of own and cross peer
effects.
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2.2 Generic Model - Random Effects

A drawback of the fixed effects model is that differencing across individuals, which was
needed to remove the fixed effects, results in a substantial loss of information. So in this
section we instead assume that vg is independent of xi (a random effects assumption) and
provide additional moments that do not entail differencing. The moments obtained under
fixed effects remain valid under the additional random effects assumptions. So the proof
of identification under fixed effects (Theorem 1) also shows identification of the random
effects model. The goal here is to show how moments that do not require differencing can
be obtained by exploiting the random effects independence of vg from xi. One potential
advantage of the random effects model over fixed effects is that it remains identified even if
d = 0, that is, it allows for but does not require nonlinearity for identification.

For random effects it will be convenient to rewrite the quadratic model, equations (6)
and (7), as

yi = y2
ga

2d+ (c+ 2xiabd) yg +
(
xib+ x2

i b
2d
)

+ vg + ui. (11)

As before, we will need to replace the unobserved yg with some estimate, and this replacement
will add an additional epsilon term to the errors. However, in the fixed effects case, when we
pairwise differenced this model, the quadratic term y2

g also dropped out. Now, since we are
not differencing, we must cope not just with estimation error in yg, but also in y2

g (recall also
that since ng is fixed, this estimation error is equivalent to measurement error, which does
not disappear asymptotically). To obtain valid moment conditions, we employ a variant of
the trick we used before. Again let i′ denote an individual other than i in group g, and ŷg,−ii′ .
Suppose we replaced yg with ŷg,−ii′ as before. The problem now is that the error ŷ2

g,−ii′ − y2
g

would in general be correlated with xl for every individual l in the group, including i and i′.
To circumvent this problem, we replace the linear term yg with the estimate ŷg,−ii′ as

before, but we replace the squared term ŷ2
g,−ii′ with ŷg,−ii′yi′ . This latter replacement might

seem problematic, since a single individual’s yi′ provides a very crude estimate of yg. How-
ever, we repeat this construction for every individual i′ (other than i) in the group, and
essentially average the resulting moments over all individuals i′ in g. With this replacement,
equation (11) becomes

yi = ŷg,−ii′yi′a
2d+ (c+ 2xiabd) ŷg,−ii′ +

(
xib+ x2

i b
2d
)

+ vg + ui + ε̃gii′

where
ε̃gii′ =

(
y2
g − ŷg,−ii′yi′

)
a2d+ (c+ 2xiabd)

(
yg − ŷg,−ii′

)
We can then show (see the Appendix for details), that E(ε̃gii′|xi, rg) = −da2V ar (vg). Our
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constructions in estimating the group mean eliminates correlation of the error ε̃gii′ with xi.
But ε̃gii′ still does not have conditional mean zero, because both ŷg,−ii′ and yi′ contain vg, so
the mean of the product of ŷg,−ii′ and yi′ includes the variance of vg.

It follows from the above that

E
[
yi − ŷg,−ii′yi′a2d− (c+ 2xiabd) ŷg,−ii′ −

(
xib+ x2

i b
2d
)
− v0 | xi, rg

]
= 0 (12)

where v0 = E (vg)− da2V ar (vg) is a constant to be estimated along with the other parame-
ters, and rg are the same group level instruments we defined earlier. Letting rgi be functions
of xi and rg (such as xi, rg, x2

i , and xirg), we immediately obtain unconditional moments

E
[(
yi − ŷg,−ii′yi′a2d− (c+ 2xiabd) ŷg,−ii′ −

(
xib+ x2

i b
2d
)
− v0

)
rgi
]

= 0 (13)

which we can estimate using GMM exactly as before. The moments from the fixed effects
model, equation (10), remain valid under random effects, so both equations (10) and (13)
could be combined in a single GMM estimator to increase asymptotic efficiency.

As with the fixed effects model, in the Appendix we extend the above model to allow for
a vector of covariates xi, and to allow for a J vector of outcomes yi, replacing the scalar a
with a J by J matrix of own and cross equation peer effects.

3 Nonstructural Analysis: Well-Being, Consumption and

Luxuries

Do group level peer consumption externalities exist? Do they make people worse off? Before
developing our full utility derived structural model, we present some non-structural empirical
findings addressing these questions. The first analysis applies the generic model of the pre-
vious sections to our India data, and shows that peer effects are present in the consumption
of luxuries. The second, using data from a separate India data set, is a simple regression of
self reports of well-being on own and peer expenditures. Both yield results that support our
theoretical utility derived model of peer effects.

3.1 National Sample Survey data

For our main analyses, we use household consumption data from rounds 59 to 62 of the
National Sample Survey (NSS) of India (conducted in 2003 to 2006). Table 1 gives data on
household consumption from round 61 of the NSS. We consider only households that are be-
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tween the 1st and 99th percentiles of household expenditure in each state/year. We use only
urban households whose state-identifier is not masked and with 12 or fewer members whose
head is aged 20 or more. To increase the on-the-ground salience of our groups, we restrict to
non-scheduled caste/scheduled tribe Hindus. We define groups as the cross of education of
household head (in 3 levels: uneducated/illiterate; completed primary; completed secondary)
and geographic district (575 districts across 33 states). We drop groups that have fewer than
10 households. Our resulting dataset has 56,516 distinct households in 2354 groups, giving
an average group size of 24 households. Our estimator uses all household-pairs within each
group, and we have a total of 2,055,776 such pairs. We provide summary statistics at the
level of the household, and at the level of the household-pairs used for estimation.

The NSS collects item-level household spending for 76 items, and collects quantities for
roughly half of these. We consider only the 48 nondurable consumption items, and compute
total expenditure xi as the sum of spending on these nondurable consumption items. We
automate the classification of items into luxuries versus necessities by regressing the budget
shares of each of these 48 nondurable items on the log of total expenditure, and classify those
items with positive slopes as luxuries and the rest as necessities. Note that these are poor
households, so unlike more developed countries, typical luxuries here are goods and services
like sweets, ghee, processed foods, transportation, shampoo, and toothpaste.

Total expenditures, and its components of luxury and necessity spending, are expressed
in units of average household expenditure in round 59, so the average total expenditure of
1.12 reported in Table 1 shows that household spending was 12% higher in our sample than
in the first round of the data. Roughly one-quarter of household spending is classified as
luxury spending (0.31/1.12). Prices are constructed from unit values at the item level by
taking the median at the state-round level, then aggregated up to the level of luxuries and
necessities with a Laspeyres index.

3.2 Generic Model Estimates

Our first empirical exercise is to estimate the fixed and random effects models of the previous
sections. Here, yi is expenditures on luxuries, yg is the true group-mean expenditure on
luxuries, ŷg is the observed sample average, and xi is total expenditures.

We provide estimates using random-effects unconditional moments (13) and fixed-effects
unconditional moments (10). Define xg,−t to be the group-average expenditure in other time
periods. Fixed-effects instruments rgii′ are: xg,−t, (xi − xii′), (xi − xii′)xg,−t, (x2

i − x2
ii′), (zi −

zk), (zi−zk)xg,−t, zg, zg(xi−xi′), 1. Random-effects instruments rgi are: xg,−t, xi, xixg,−t, x2
i , zi, 1.

These instruments are constructed to mirror the sources of identification in the FE and RE
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cases, respectively. Resulting GMM estimates of the parameters are given in Table 2.
In the fixed, but not random effects specifications, peer luxury expenditure has a sig-

nificant and substantial effect on own luxury expenditure. Higher levels of peer luxury
expenditure work in the opposite direction of higher levels of own expenditure, effectively
making the household behave (in a demand sense) as if it was poorer when peer expendi-
tures rise. However, the magnitude of the peer effects varies dramatically across RE and
FE specifications (although they do not vary much with different controls). Equality of peer
effects is decisively rejected by Hausman tests. This is a natural consequence of the group-
level unobservable taste for an expenditure category vg being correlated with expenditure
in that category. In our preferred FE estimate of column 8, a 100 rupee increase in peer
luxury expenditures makes households behave as if they are over 50 rupees poorer (in terms
of luxury demand), controlling for group level characteristics.

In both models, the estimated values of b and d are positive. As a result, the first and
second derivatives of luxury consumption with respect to total expenditures xi are positive,
which is sensible for luxury goods.

While the results here are consistent with our theoretical model, this analysis has sev-
eral shortcomings. First, it only shows how peer’s spending affects one’s own spending on
luxuries, but it cannot tell us if these spillovers are bad in the sense of lowering one’s utility
when one’s peers spend more (though the results do suggest this is the case, since they show
that one acts as if one is poorer when one’s peers spend more). Second, although we control
for prices by including them as covariates, the model does not do so in a way that is consis-
tent with utility maximization, because the model is not derived from utility theory. Third,
the model does not allow for the possibility that group-average non-luxury spending affects
luxury demands. This can most easily be seen by noting that b is typically smaller (albeit
insignificantly) than a in the FE specifications, meaning that group expenditure has a larger
effect on behavior than xi. We will show later that this is inconsistent with a peer-spending
equilibrium, and is a natural consequence of excluding group-average non-luxury spending
from the right hand side. Fourth, it is not possible to derive welfare or utility implications
of the resulting estimates.

In order to address the first of these issues, and to provide additional guidance for con-
structing a formal model of utility that solves all the other shortcomings, we now turn to a
brief analysis of well-being data from a different survey. Dealing with the remaining issues
will require our full structural model.
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3.3 Subjective well-being and peer consumption

Our generic model estimates above are consistent with a model in which increased peer
consumption decreases the utility one gets from consuming a given level of luxuries, as
suggested by our theoretical model of needs. But they are also consistent with a demand
model where peer spending increases the consumption utility in a given category, as when
peer consumption increases the utility of one’s own cell phone use through network effects.
This distinction is the difference between peer expenditures constituting positive versus
negative externalities, and is of crucial importance for quantifying the welfare ramifications
of peer effects in consumption.

To directly check the sign of these spillover effects on utility, we would like to estimate
the correlation between utility and peer expenditures, conditioning on one’s own expenditure
level. While we cannot directly observe utility, here we make use of a proxy, which is a
reported ordinal measure of life satisfaction.

Table A1 summarizes 3236 observations from the 5th (2006) and 6th (2014) waves of the
World Values Survey, two recent waves with most consistent income reporting. In each year
the surveyor asks the question, “All things considered, how satisfied are you with your life as
a whole these days?” Answers are on a 5-point ordinal scale in the 5th wave, and a 10-point
scale in the 6th, which we collapse to a 5-point scale.

Neither wave of the survey reports actual income or consumption expenditures. What
this survey does report is position on a ten-point income distribution that corresponds to
the deciles of the national income distribution. We use this response to impute individual
total expenditure levels by taking the corresponding decile-specific expenditure mean from
the NSS data. We also obtain group level total expenditures from the NSS data. For
this analysis we define groups by religion (Hindu vs non-Hindu), education level (less than
primary, primary, secondary or more) and state of residence (20 states and state groupings).
These are much larger, more coarsely defined groups than we use for all of our other analyses.
Much larger groups are needed here because the WVS sample size is much smaller than the
NSS, and because we have no asymptotic theory to deal with small group sizes in this part
of the analysis.

Our preferred measures of total expenditures are deflated using the CPI index for India.
Average expenditure is 2200 rupees per month (which deflates to 1999 rupees), or about 50
US dollars. This is lower than the average for India at this time, which appears to be due to
sample composition issues in the WVS. For example, only 1.6% of households in the WVS
are in the top decile of income.

Table 3 presents estimates of well-being as a function of both own total expenditures and
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group total expenditures, specified as

ui = β1x̂igt + β2x̂gt + Zigtα + γg + φt + εigt, (14)

where ui is the z-normalized well-being indicator, x̂igt is imputed individual expenditures,
x̂gt is imputed group expenditures, Zigt is vector of individual level controls, γg is a group
level fixed effect (recall that groups are defined within states, so this effectively includes a
state fixed effect as well), and φt is a year fixed effect. Identification of β2 comes from group-
level changes in expenditure between rounds, and corresponds to the change in self-reported
utility as group income is rising versus falling, holding own income constant. We also repeat
this analysis using an ordered logit specification.

Results in the second column of Table 3 imply that a 100 rupees increase in individual
expenditures x̂igt increases satisfaction by 0.13 standard deviations, while a 100 rupees in-
crease in group expenditure x̂gt decreases satisfaction by 0.19 standard deviations. This is
similar to Luttmer’s (2005) finding of “neighbours as negatives,” where increases in group
income holding individual income constant reduces individual’s reported well-being.

The ratio of the peer-expenditure and own-expenditure effects, −β2/β1 = 19/13 = 1.45,
says that one must increase one’s own expenditures by 145 rupees to compensate for the
loss of utility that results from a 100 rupees increase in group expenditure levels. This point
estimate is unreasonably large, as we show later that equilibrium requires that this ratio be
less than 1. Reassuringly, we cannot reject the hypothesis that β2 + β1 = 0, so the ratio
could be less than one. The corresponding ratio estimate in Luttmer (2005) is 0.76, and we
can’t reject that value either.

Since well-being is reported on an ordinal scale, to check the robustness of these results,
we estimate the same regression as an ordered logit (see columns 4 and 5 of Table 3). The
results are qualitatively the same, suggesting that our results are not being determined by
the normalizations implicit in z-scoring the satisfaction responses.

Taken together, these regressions suggest that utility is increasing in household expendi-
ture, decreasing in group average expenditure, and that the magnitude of the latter effect is
similar to that of the former but opposite in sign. This suggests validity of the model of per-
ceived needs that we employ in our structural analysis later. Our next step is to construct
a model of utility that is consistent with what we observe here, accommodates price and
demographic heterogeneity, and enables analyses of the welfare implications of peer effects.
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4 Utility, Welfare, and Demands With Needs Containing

Peer Effects

Let i index consumers and let qi = (q1i, .., qJi) be a J–vector of commodity quantities
chosen by consumer or household i. Let p be the corresponding J-vector of prices of each
commodity, let xi be the total budget for commodities of consumer i, and let zi be a K
vector of observed characteristics of consumer i. Commodities here are aggregates of goods
or services that are assumed to be purchased and consumed in continuous quantities. Each
consumer i is assumed to choose qi to maximize a direct utility function, subject to the
budget constraint that p′qi ≤ xi. Let i ∈ g denote that consumer i belongs to group g. Let
qg = E (qi | i ∈ g), so qg is the mean level of quantities consumed by consumers in group g.

As derived in section 1.2, we assume preferences can be represented by an indirect utility
function of the form

ui = V (p, xi − p′fi) with fi = Aqg + Czi (15)

for some J by J parameter matrix A and some J by K parameter matrix C. The larger
the elements of A are, the greater are the peer effects. If A is a diagonal matrix, then
the perceived needs for any commodity depend only on the group mean purchases of that
commodity. We may more generally allow for nonzero off diagonal elements as well. So, e.g.,
my peer’s expenditures on luxuries could affect not only my perceived needs for luxuries,
but also my perceived needs for necessities.

In general, we expect elements of A, particularly diagonal elements, to be nonnegative.
However, they cannot be too large (and in particular diagonal elements cannot exceed one),
since otherwise stable equilibria may not exist (analogous to the Assumption A2 inequality
being violated in the generic model). See the Appendix for details.

For welfare calculations, we need to compare well being across consumers. Define the
equivalent-income X̃i as the income (budget) needed by consumer i to get the same level of
utility as that of some reference consumer i = 0 having a budget x. As discussed earlier,
equation (15) is in the class of models that satisfy Blackorby and Donaldson’s (1994) Absolute
Equivalence Scale Exactness (AESE) property. It follows from their results that X̃i itself
cannot be identified, but differences X̃i − X̃i′ for any two individuals i and i′ are given
by X̃i − X̃i′ = xi − xi′ − p′ (fi − fi′). Blackorby and Donaldson show that, for preferences
satisfying AESE, equivalent incomes are money metric measures of utility, and therefore
social welfare functions can be defined as functions of everyone’s equivalent incomes X̃i. A
particularly convenient social welfare function, though one that is not inequality averse, is
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the simple sum
∑

i X̃i. Given estimates of fi, we can therefore calculate changes in this social
welfare function (i.e., total money metric utility in the population) from changes in mean
income in the population and corresponding changes in needs p′

∑
i fi.

Having specified fi and hence the functions defining needs, now consider the indirect
utility function V . A long empirical literature on commodity demands finds that observed
demand functions are close to polynomial, and have a property known as rank equal to three.
See, e.g. Lewbel (1991) and Banks, Blundell, and Lewbel (1997), and references therein.
Gorman (1981) shows that any polynomial demand system will have a maximum rank of
three, and Lewbel (1989) shows that the simplest tractable class of indirect utility functions
that yields rank three polynomials in x is V (p, x) = (x−R (p))1−λB (p) / (1− λ)−D (p)

for some constant λ and some differentiable functions R, B and D.
The most commonly assumed rank three models are quadratic (see the above refer-

ences, and Pollak and Wales 1980), which corresponds to λ = 2, implying V (p, x) =

− (x−R (p))−1B (p) − D (p). Combining this with AESE and our parameterization of
the needs function fi gives the model

ui = V (p, xi − p′fi) = −
(
xi −R (p)− p′Aqg − p′Czi

)−1
B (p)−D (p)

for the utility of consumer i in group g. Preserving homogeneity (i.e., the absence of money
illusion, which is a necessary condition for rationality of preferences), requires R (p) and
B (p) to be homogeneous of degree one in p and D (p) to be homogeneous of degree zero in
p.

Applying Roy’s (1947) identity to this indirect utility function then yields the vector of
demand functions

qi =
(
xi −R (p)− p′(Aqg + Czi)

)2 ∇D (p)

B (p)
(16)

+
(
xi −R (p)− p′(Aqg + Czi)

) ∇B (p)

B (p)
+∇R (p) + Aqg + Czi.

To allow for unobserved heterogeneity in behavior, we append the error term vg + ui to
the above set of demand functions, where vg is a J−vector of group level fixed or random
effects and ui is a J−vector of individual specific error terms that are assumed to have zero
means conditional on all xl, zl, and p with l ∈ g. In the fixed effects model, the group level
fixed effect vg is permitted to correlate with other regressors like p and qg. We also consider
a random effects model, where much greater efficiency is gained by adding the restrictions
that vg satisfies some independence assumptions.

These error terms and fixed effects can be interpreted either as departures from utility
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maximization by individuals, or as unobserved preference heterogeneity. Assuming that
the price weighted sum p′ (vg + ui) is zero suffices to keep each individual on their budget
constraint. Under this restriction, if desired one could replace Czi with (Czi + vg + ui) in the
indirect utility function above, and treat error terms as unobserved preference heterogeneity
parameters.

Convenient yet flexible specifications of the price functions are R (p) = p1/2′Rp1/2 where
R is a symmetric matrix, lnB (p) = b′ ln p with b′1 = 1, and D (p) = d′ ln p with d′1 = 0.
Substituting these error terms and price functions into the above demand function yields,
for each good j, the demand model

qji = Qj

(
p, xi,qg, zi

)
+ vjg + uji

where

Qj

(
p, xi,qg, zi

)
= X2

i e
−b′ lnpdj

pj
+Xi

bj
pj

+Rjj +
∑
k 6=j

Rjk

√
pk/pj + A′jqg + C′jzi, (17)

A′j is row j of A, C′j is row j of C, and where we define for convenience "deflated income"
by

Xi = X(p, xi,qg, zi) = xi − p1/2′Rp1/2 − p′Aqg − p′Czi. (18)

Deflated income Xi is convenient for simplifying notation, but does not have the welfare
significance of equivalent income X̃i. However, if prices are held fixed, then X̃i − X̃i′ =

Xi − Xi′ , so we can use either one interchangeably for calculating changes in needs or in
money metric utility.

In all of the above, different consumers can be observed in different time periods (no
consumer is observed more than once). Prices vary by time, and also vary geographically.
Assume that our data spans T different price regimes (time periods and/or geographic re-
gions). Each individual i is observed in some particular price regime t ∈ {1, 2, ..., T}, so we
add a t subscript to every group level variable above.

The goal will be estimation of the set of parameters {A, C, R, d, b}. Our particular
interest will be in identifying equivalent income X̃(pt, xi,qgt, zi), which forms the basis of
our welfare analyses as discussed in the previous section. The only parameters the function
X̃(pt, xi,qgt, zi) depends on are A and C. Interestingly, under random effects A and C

could be identified even if the data contained no price variation.
In our empirical application, some of the characteristics zi are group level attributes, that

is, they vary across groups but are the same for all individuals within a group. Where it is
relevant to make this distinction, we write C as C =

(
C̃ : D

)
for submatrices C̃ and D ,

23



and replace Czi with Czi = C̃z̃i + Dz̃g, where z̃i is the vector of characteristics that vary
across individuals in a group and z̃g are group level characteristics. Under fixed effects, A

and C̃, but not D, could be identified even if the data contained no price variation.
There is one more extension to the above model that we consider in our estimates, but

do not include above to save on notation. We allow a few discrete characteristics (educa-
tion dummies) to interact with qg. This is equivalent to letting A vary with these discrete
characteristics. Identification of the model with this extension follows immediately from
identification of the model with A constant, since the the same assumptions used to iden-
tify the above model with fixed A can just be applied separately for each value of these
characteristics.

Our demand model is the system of equations given by plugging equation (18) into
equation (17) for all goods j. In the Appendix we provide assumptions and associated
proofs that all of the parameters of the model, A, C, R, d, and b, are identified under
either fixed effects or random effects. The methods of identification and proofs given there
proceed in two steps. First, we consider the model without price variation, constructing the
Engel curves that correspond to our demand system. Using techniques entirely analogous
to the corresponding generic model (in which moments are constructed that can be used for
estimation via GMM), we show identification of these Engel curves. We then show that, by
identifying how the Engel curve parameters vary across price regimes, we can (with a small
amount of relative price variation) recover all of the parameters of the full demand model.
For estimation, it is not necessary to perform the estimation in these two steps. Instead, we
just directly construct moments for GMM estimation of the full demand system. In the next
sections we summarize this estimation procedure. Given our moments based identification
strategy, consistency and the limiting distribution of the resulting estimator follow from
standard GMM asymptotic theory with clustered standard errors. See the Appendix for
details.

5 Implementing the Demand System

Here we show how the parameters in the system of demand equations (17) can be identified
and estimated, by extending the same methods used for the generic fixed effects and random
effects models. Formal assumptions, proofs, and details are deferred to the Appendix. Based
on these results, we can estimate all of the parameters of our demand system assuming we
have data from at least J different price regimes (time periods and/or regions), which we
will index by t. As is standard in the estimation of continuous demand systems, we only
need to estimate the model for goods j = 1, ..., J − 1. The parameters for the last good J
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are then obtained from the adding up identity that qJi =
(
xi −

∑J−1
j=1 pjtqji

)
/pJt.

Most of our analyses will be based on J = 2, with the two goods being luxuries and
necessities, and where A and R are both diagonal. With these simplifications we only need
to estimate the demand equation for good 1 and equations (17) and (18) reduce to

Q1

(
p, xi,qg, zi

)
= X2

i e
−b1 ln p1t−(1−b1) ln p2td1/p1t +Xib1/p1t

+R11 + A11qg1t + C′1zi,

with deflated income Xi is given by

Xi = X(pt, x,qgt, zi) = xi −R11p1t −R22p2t (19)

−
(
A11qg1t + A22qg2t + C′1zi

)
p1t −C′2zip2t.

As is common in empirical work in demand analysis, we reframe quantity demand equa-
tions into spending equations by multiplying by price. In the above model this gives us the
expenditure equation

p1tQ1

(
p, xi,qg, zi

)
= X2

i e
−b1 ln p1t−(1−b1) ln p2td1 +Xib1 (20)

+R11p1t + A11p1tqg1t + C′1p1tzi + p1tv1gt + p1tu1i.

5.1 Estimating the Demand System With Fixed Effects

As in the generic model, the main complication with estimation arises from the fact that
the model is nonlinear, and the error from estimation of qg can generally be correlated
with other variables and with the model error terms. As in the generic model, to construct
valid moments with fixed effects we difference across all pairs of individuals i and i′ in each
group g, and construct both appropriate instruments and an appropriate estimator for qg

that eliminates these unwanted correlations. The estimator for the unobservable true group
mean qg is, as in the generic model, the leave-two-out estimated average

q̂gt,−ii′ =
1

ngt − 2

∑
l∈g,t,l 6=i,i′

ql.

Given any pair of individuals i and i′ in group g in time and district t, the variable q̂gt,−ii′

is simply the average of ql over all of the observed consumers l in g and t, except for the
individuals i and i′. This definition assumes that ngt, the number of individuals observed in
our data in each group g in each time and district t, is three or more.
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To implement the fixed-effects estimator, we substitute q̂gt,−ii′ in for qgt in the Xi and Qj

equations, and construct associated moment conditions. For each pair of consumers i and i′

in each group g in each price regime t, the resulting moments we obtain for estimation are

0 = E{rgtii′ [pjtqji − pjtqji′ − pjtQj (pt, xi, q̂gt,−ii′ , zi) + pjtQj (pt, xi′ , q̂gt,−ii′ , zi′)]} (21)

where the vector of instruments rgtii′ is defined below. Equation (21) for all observed pairs
of consumers i and i′ in each group g in each period t, and is implemented for goods j =

1, ..., J − 1.
Let x̂(t)g denote the sample mean of xi over observed individuals i in group g in all time

periods except the time period of price regime t. Define ẑ(t)g analogously. Let rgt be the
vector of elements x̂(t)g, ẑ(t)g, and pt. The instrument vector rgtii′ is then constructed from
the exogenous variables x̂(t)g, ẑ(t)g, pt, xi, xi′ , zi and zi′ .

For estimation of these moments by GMM, let the unit of observation be each observed
pair of consumers i and i′ in each group and price regime gt. The total number of moments
is the number of elements of rgtii′ times J − 1, because equation (21) applies to each good
and each instrument. As with the generic model, one must use clustered standard errors,
where each group is a cluster, to account for the correlations that, by construction, will exist
among the i and i′ pairs that comprise each observation within each group. Clustering over
time as well as across individuals allows for possible serial correlation in the errors. See the
Appendix for details regarding the construction and properties of this estimator.

5.2 Estimating the Demand Model With Random Effects

As in the generic model, a great deal of information is lost by differencing out the fixed effects.
We now consider adding additional assumptions to the demand model, in particular that
vgt is independent of xi,pt, zi and qgt, which allows us to treat vgt as random effects. These
assumptions provide stronger moments for GMM estimation that do not entail differencing.

In the fixed effects model, differencing removed vgt, but it also removed the matrix qgtq
′
gt

that appears inside the squared deflated income term X2. In the random effects estimator
we do not difference, so qgtq

′
gt does not drop out, and we must deal with estimation error

in this quadratic term. Our solution takes the same form as in the random effects generic
model. We use q̂gt,−ii′ to estimate qgt wherever it appears linearly, and for every i′ in the
same gt as i, we use q̂gt,−ii′q

′
i′ to estimate the product qgtq

′
gt.

Specifically, based on equation (18), define X̂1tg,−ii′ and X̂2tg,−ii′ (estimates of X and X2,
respectively) by

X̂1tg,−ii′ = xi − p
1/2′
t Rp

1/2
t − p′tAq̂gt,−ii′ − p′tCzi. (22)

26



and

X̂2tg,−ii′ = p′tAq̂gt,−ii′q
′
i′A
′pt − 2

(
xi − p

1/2′
t Rp

1/2
t − p′tCzi

)
p′tAq̂gt,−ii′ (23)

+
(
xi − p

1/2′
t Rp

1/2
t − p′tCzi

)2

.

Equations (22) and (23) are nothing more than replacing qgt with q̂gt,−ii′ and replacing qgtq
′
gt

with q̂gt,−ii′q
′
i′ in the expressions for X and X2.

Let rgti denote the vector of instruments consisting of the elements x̂(t)g, ẑ(t)g, pt, xi,
zi, along with squares and cross products of these elements. The instruments here include
functions of xi and zi but, unlike the fixed effects case, the instruments do not include
functions of xi′ and zi′ and so also do not contains functions of differences like xi − xi′ or
zi − zi′ . The resulting moments used to estimate the random effects model are, for goods
j = 1, ..., J − 1,

0 = E

[
rgti

(
pjtqji − X̂2tg,−ii′e

−b′ lnptdj − X̂1tg,−ii′bj − pjtRjj −
∑
k 6=j

Rjk
√
pjtpkt −A′jpjtq̂gt,−ii′ −C′jpjtzi − v

(24)
where vjt0 is an additional constant term for each good j and price regime t that results
from taking an average of the random effects component of the error term. As in the generic
random effects model, this nonzero vjt0 term is due to the error in estimating the product
qgtq

′
gt.
We show in the Appendix that, under suitable assumptions listed there, equation (24)

holds after substituting in equations (22) and (23), and these suffice for identifying all of the
model parameters A, C, R, d, and b. As in the fixed effects estimator, the observations
used for estimation consist of every pair of individuals i and i′ within every group and price
regime gt. Inference is standard GMM with clustered standard errors, where each group g is
a cluster. If we add the additional assumption that the random effects vgt are uncorrelated
across price regimes t, then we can take each g in each price regime t as a separate cluster.

There are two options for dealing with the vjt0 terms. One is to treat the set of constants
vjt0 for j = 1, ..., J − 1 and t = 1, ..., T as (J − 1)T additional parameters to estimate.
However, this option is unattractive in terms of loss of efficiency, given the number of pa-
rameters involved. Alternatively, in the Appendix we show that, given some additional mild
assumptions,

vjt0 = −p′tAΣvA
′pt

(
e−b

′ lnpt

)
dj

where Σv = V ar(vgt), which for this construction is assumed constant over time. Then,
instead of estimating (J − 1)T parameters in addition to the structural ones, we may sub-
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stitute this expression for vjt0 into the above GMM moments, and thereby only estimate the
matrix Σv, consisting of J(J + 1)/2 parameters, in addition to the structural parameters.

Formal details, derivations, and limiting distribution theory of this estimator are provided
in the Appendix.

6 Structural Demand System: Empirical Results

In this section, we estimate the structural demand model defined by plugging equation (18)
into equation (17) for each good j, and adding error terms u and group level fixed or random
effects v to each equation in each time period. We begin with a J = 2 goods model,
which therefore only requires estimating the demand for good j = 1, defined by substituting
equation (19) into equation (20). Demand for good j = 2 is then given by the adding up
constraint defined earlier.

Like most modern continuous demand models (e.g., Banks, Blundell, and Lewbel, 1997;
Lewbel and Pendakur, 2009), our theoretical model includes a quadratic function of prices
given by the matrix R, to allow for general cross price effects. However, in our data the
geometric mean of prices turns out to be highly collinear with individual prices, leading to
a severe multicollinearity problem when R is not diagonal. We therefore restrict R to be
diagonal. Note that, because of the presence of additional price functions in our model,
imposing the constraint that R be diagonal is not restrictive when J ≤ 3, in the sense that
our model remains Diewert-flexible (see, e.g., Diewert 1974) in own and cross price effects
even with this restriction.

Our fixed and random effects estimators are as described in the previous section. With
J = 2, our two goods are luxuries and necessities, and so we are estimating just one equation
for luxury demands, which is similar in spirit to the generic model estimates we reported
earlier. However, even with J = 2 our structural model estimates differ from the generic
model in three important ways. First, as described in section 4, our structural model provides
a money metric utility based welfare measure of the peer effect spillovers through the needs
component of the utility function. The matrix A gives the magnitude of these spillovers. If
these are positive, then an increase in group-average spending increases needs, and affects
utility in the same way as a decrease in household expenditure. This is indeed what we find,
and is also consistent with Luttmer (2005) and with our WVS data life satisfaction estimates
reported earlier in section 3. Second, our structural model incorporates demographic and
price variation in a way that is consistent with utility maximization. Third, we allow the
demands for goods to depend separately on the group average spending of each good, e.g.,
luxury demands can depend on both group-average luxuries spending and group-average
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necessities spending.

6.1 Structural Model Data

In our baseline empirical work, as in the generic model, we focus on non-urban Hindu non-
Scheduled Caste/Scheduled Tribe (SC/ST) households. However, we also report additional
results for samples of non-urban non-Hindu households and samples of SC/ST households.
We have groups defined by education (3 categories: illiterate or barely literate; primary
or some secondary; completed secondary or more) and by district (575 districts across 33
states), and 4 years of data, allowing each group to be observed up to four times. We require
each group to have at least 10 observations in each of at least two time periods. Roughly 18
per cent of households are dropped with these restrictions.5 We are still left with relatively
few observations per group. The average size of a group in each period is 24 households, and
the median is even smaller. For our sample of non-urban Hindu non-SC/ST households, we
have a total of 1111 distinct groups that are observed in at least 2 time periods each, for a
total of 2354 period-groups. Each group is seen in either two, three or four time periods,
but most groups are observed only twice.

Our observed prices vary by time and by state, so since t indexes price regimes, t ranges
from 1 to T = 4 ∗ 33 = 132. Each individual i is only observed once, in one price regime and
belonging to one group.

Table 1 shows summary statistics for the seven household-level demographic character-
istics that comprise our vector zi. These are household size less 1 divided by 10; the age
of the head of the household divided by 120; an indicator that there is a married couple
in the household; the natural log of one plus the number of hectares of land owned by the
household; an indicator that the household has a ration card for basic foods and fuels; and
indicators that the highest level of education of the household head is primary or secondary
level (they are both zero for uneducated or illiterate household heads).

Table 1 also gives summary statistics on state-level prices p. We construct prices of
our demand aggregates as follows. In a first stage, following Deaton (1998), we compute
state-item-level local average unit-value prices for the subset of items for which we have
quantity data, to equal the state-level sum of spending divided by the state-level sum of
quantities. Then, in a second stage, we aggregate these state-item-level unit value prices
into state-level luxury and necessity prices using a Stone price index, with weights given by

5We experimented with including very small groups, but this resulted in a substantial decrease in esti-
mation precision. Very small groups have extremely noisy estimates of group-averages, and although our
measurement error correction is consistent even when including these groups, its efficiency properties are
adversely affected.
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the overall sample average spending on each item. In a typical state and period, these prices
are computed as averages of roughly 2000 observations, so we do not attempt to instrument
for possible measurement errors in these constructed price regressors.

Table 1 also reports summary statistics for prices and quantities of visible and invisible
subcomponents of luxuries and necessities. We use these later on, when we consider the
question of whether social interaction effects differ for goods that are visible to other con-
sumers in comparison to those that are not visible. We use the categorization of Roth (2014)
to classify goods as visible versus invisible.

6.2 Baseline Structural Model Estimates

We estimates all models by GMM. For the 2-good system (luxuries and necessities), we
employ the moment conditions (21) and (24) for the fixed- and random-effects models, re-
spectively. These moments use pair-specific instruments, rgtii′ , which differ between our
fixed- and random effects models. For both fixed- and random-effects instruments, we
create a group-level instrument q̌gt equal to the OLS predicted value of q̂gt conditional
on x̂gt., x̂2

gt.,
√
x̂gt., x̂

2
gt., ẑgt..6 Additionally, let z̃it and z̃gt be the individually-varying and

group-level, respectively, subvectors of zi (as in Appendix 9.5). In our baseline model, z̃it

includes 5 household-level variables, and z̃gt includes just the remaining 2 variables: dummy
variables for primary- and secondary-school education levels. Letting · denote element-wise
multiplication, our instrument list for the fixed-effects model is:

rgtii′ =
(
x2
it − x2

i′t

)
, (xit − xi′t)·(1,pgt · q̌gt,pgt · z̃gt) ,pgt·(z̃it − z̃i′t)·(1,pgt · q̌gt) , xitpgt·(z̃it − z̃i′t) .

Our instrument list for the random-effects model is:

rgti = (1,pgt,pgt · q̌gt,pgt · zit) , xit · (1,pgt, xit,pgt · q̌gt,pgt · zit) , pgt · pgt.

The last term provides instruments for vjt0.
Our primary focus is estimation of peer effects given by elements of the matrix A, but first

we consider the general reasonableness of our coefficients in the context of demand system
estimation. Complete estimates for our baseline models (corresponding to Tables 4 and 5)
are given in Appendix Tables A2 and A3. Our estimated quantity demand for luxuries has
positive curvature. All four baseline specifications have d1, the coefficient on the squared
budget term, being statistically significantly positive and of large magnitude, as expected for

6This is similar to including these values as instruments for qgt, but reduces the dimensionality of the
instrument vector. This dimensionality reduction is quite significant because q̌gt is multiplied by the demo-
graphic controls to generate the final instrument vector.
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luxuries. Regarding demographic covariates, it is reasonable to expect that needs would rise
with household size. In all four baseline specifications we find that this is indeed the case,
specifically, the parameters Cj,hhsize, are statistically significant and positive. Additionally,
their magnitudes are reasonable: an additional household member increases the needs for
luxuries by roughly 0.06 and the needs for necessities by roughly 0.15, where the units are
normalized to equal 1 for the average income in 2009.

Table 4 gives estimates of the spillover parameter matrix A using fixed effects (FE)
moments for the 2-good system (luxuries and necessities). We consider 2 cases here: the left
panel, labeled “A same,” gives estimates for the case where A is equal to a scalar, a, times
the identity matrix, so A = aIJ . The right panel of Table 6, labeled “A diagonal” gives
estimates for the case where A is a general diagonal matrix. Later we consider cross-effects,
allowing A to have non-zero off diagonal elements.

In the “A same” case, needs are given by Fi(pt) = p′tAqgt + p′tCzi = ap′tqgt + p′tCzi =

axgt + p′tCzi, so we can interpret the scalar a as ∂F/∂xgt = a. The estimate of the scalar a
in Table 6 is 0.50, meaning that a 100 rupee increase in group-average income xgt increases
perceived needs (and therefore decreases equivalent income) by 50 rupees. The standard
error of a is 0.11 so we can reject a = 0, which would correspond to no peer effects. We can
also reject a = 1 which would correspond to peer effects so large that there are no increases
in utility associated with aggregate consumption growth.

This scalar a, obtained using revealed preference theory on consumption data, has a
roughly comparable interpretation to the estimate of spillover effects in the WVS life satis-
faction model reported in section 3.3. The point estimate there was greater than one, but
had wide confidence bands that include values close to our estimate of 0.50. This is also
roughly comparable to Luttmer’s (2005) estimate of 0.76 using stated well-being data.

In the bottom left of Table 4 we test, and reject, the hypothesis that the two elements on
the diagonal of A are equal to each other. However, when we estimated the model allowing
the two elements to differ (see the right panel of Table 6), we obtain estimates that lie far
outside the plausible range of [0, 1]. These estimates are also very imprecise, with standard
errors that are roughly triple those in the left panel. The explanation for this imprecision
and corresponding wildness of the estimates is that, in the FE model, all the parameters in
A are identified from the (xi − xi′)qgt interaction terms (recall here and below that, in the
actual estimates, qgt is unobserved and is replaced by the estimate q̂gt,−ii′). In our data,
the elements of our estimate of qgt are highly correlated with each other, with a correlation
coefficient of 0.85, resulting in a large degree of multicollinearity. The result is that the
estimated first element of A is implausibly low, offset by the second element of A that is
implausibly high by a similar magnitude.
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This problem of multicollinearity is considerably reduced in the random effects model,
with its stronger assumptions. In particular the RE model contains an additive qgt term
which is differenced out in the FE model. This is in addition to a now undifferenced xiqgt
interaction term, with both terms helping to identify A in the RE model. On the bottom
of Table 4, we report the results of a Hausman test comparing the FE and RE models. The
additional restrictions of the RE model are not rejected in the “A same” specification, but
are rejected in the more general “A diagonal” specification.

The estimates of A in the RE model are reported in Table 5. The RE estimate of the
scalar a in the “A same” model is 0.55, while for diagonal A the estimate of the luxuries
spillover coefficient (the first element on the diagonal of A) is 0.46 and the necessities spillover
coefficient is 0.57. The standard errors of these estimates are around 0.02, far lower than in
the fixed effects model. While similar in magnitude, we reject the hypothesis that the two
elements of A in the RE model are equal.

The interpretation of these separate coefficients is that the j’th element on the diagonal
of A equals ∂F/∂

(
pjtqjgt

)
, which is the response of perceived needs to a 1 rupee increase

in average group expenditures on good j, pjtqjgt. To compare these estimates to the scalar
a, suppose group average expenditures xgt increased by 100 rupees. Then group average
luxury expenditures, pjtqjgt would increase by about 30 rupees (since, in Table 5, luxuries
are about 30% of total spending), and so the luxuries spillover would be about 14 rupees
(0.46 times 30). Similarly the necessities spillover is about 40 rupees (0.57 times 70), yielding
total spillovers of 54 rupees, which is very close to the estimates one gets with a scalar a (50
rupees in the FE model or 55 rupees in the RE model).

6.3 Alternative Structural Model Estimates

In the rightmost panel of Table 5, we report RE estimates where the matrix A is unrestricted,
allowing for nonzero cross-effects, e.g., allowing peer group consumption of necessities to
directly impact one’s demand for luxuries. The estimates display a similar (though less
extreme) wildness to that of the FE model with diagonal A. The reason is similar, in that
now we are trying to estimate four coefficients primarily from the four multicollinear terms
xiq1gt, xiq2gt, q1gt, and q2gt. So although we formally prove identification of the model with
a general A, one would either require a larger data set or more relative variation in group
quantities and within group total expenditures to obtain reliable estimates.

In Table 6, we turn to the question of whether consumption externalities vary depending
on whether or not goods are visible or invisible to one’s peers, according to the character-
isation of Roth (2014). The idea is that peer effects may be larger for visible goods, both
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because they are more conspicuous, and because of potential Veblen (1899) effects. Here, we
would expect larger consumption externalities for visible goods than for invisible goods. We
might additionally expect this to be particularly true for luxuries, as opposed to necessities.
We now have a demand system with J = 4 goods.

The first columns of Table 6 give the fixed- and random-effects estimates of the scalar
a in the “A same” model, where now four elements of the diagonal of A are all constrained
to be equal. The estimates of the scalar a are 0.71 and 0.65, respectively. These are rather
higher than the 0.50 to 0.55 estimates we obtained with J = 2 goods, but are closer to
Luttmer’s (2005) estimate of 0.76 using stated well-being data. The estimates of the scalar
a with J = 4 goods have smaller standard errors than in the case with J = 2 goods, because
now there are more equations being used to estimate the same parameter.

The last columns of Table 6 give the RE estimates of the “diagonal A” model. As before,
we find that luxuries have somewhat smaller externalities than necessities. However, the
estimated element of A for visible luxuries is smaller than that for invisible luxuries, while
the estimated value for visible necessities is larger than for invisible necessities. So the Veblen
or conspicuous consumption story is supported for necessities, but not for luxuries.

In Table 7, we consider how consumption externalities vary across group-level characteris-
tics. In the left-hand panel, we provide fixed effects estimates of the scalar a in the “A same,”
J = 2 goods model on 3 subsamples of the nonurban population: Hindu non-SC/ST (non-
Scheduled Caste/Scheduled Tribe) households, SC/ST households, and non-Hindu SC/ST
households. We find that these groups differ substantially not just in the estimates of the
scalar a, but also in their bj and dj coefficients. For Hindu non-SC/ST households, the
estimate of a is 0.50 (the same as in our baseline model) but for SC/ST households and for
non-Hindu non-SC/ST households, the point estimates of a are close to zero, though with
larger standard errors. This suggests that peer effects may vary by caste and religion.

This right hand panel of Table 7 reports differences in the scalar a across three education
groups: illiterate/barely literate, primary or some secondary education, and complete sec-
ondary or more education. We initially ran this model on three different subsamples based
on these education levels, but unlike the case with caste and religion, we found that the bj
and dj coefficient estimates did not differ much across the groups. For efficiency we therefore
pooled the data, just letting the scalar a be a linear index in the three education levels. Here
we find very low and insignificant spillovers for the illiterate/barely literate. In contrast,
the estimate of a is 0.56 for the middle education group, and lower (but not significantly
different from 0.56) in the highest education group.

The results in Table 7 are striking in that they show that poorer demographics, SC/ST
and illiterate/barely literate, have much smaller peer effects than others. In Table 8, we
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further investigate this possibility by splitting the baseline (Hindu non-SC/ST) sample into
households whose real income is below the district-round median real income and households
whose real income is above the district-round median real income. The implicit assumption
of this specification is that the poorer and richer halves of each education group within each
district correspond to different peer groups. We present fixed-effects estimates for the model
with a scalar a, and random-effects estimates for the model with scalar a and diagonal A,
since these were the most precisely estimated models in our baseline specifications.

The fixed-effects estimates of a for poorer and richer households are 0.26 and 0.59, re-
spectively. This difference is marginally statistically significant (z-stat of 1.86) but large in
magnitude, implying peer effects that are almost twice as large among the rich groups as
among the poor groups. We find a somewhat larger difference in the random-effects estimates
of a, which are 0.32 and 0.78 for poor and rich households, respectively. The random-effects
estimates pass a Hausman test against the fixed-effects alternative for both poor and rich
households. Finally, turning to the random-effects estimates with diagonal A matrices, we
see again find estimated spillovers that are much smaller for poor than for rich households.
Interestingly, for poor households we find consumption externalities that are a bit larger on
luxuries vs necessities, which is the opposite of what we found in other specifications, where
necessities spillovers were a little larger.

6.4 Structural Model Estimates Summary

We draw the following lessons on peer effects from our structural revealed preference based
model estimates.

First, we find that overall, peer effects are of similar magnitudes for luxuries and neces-
sities, suggesting that the matrix A can be reasonably approximated by a scalar a times
the identity matrix (the “A same" specifications). This implies that the consumption ex-
ternalities component of needs is close to equaling the scalar a times group-average total
expenditures. In our data, multicollinearity prevents reliable estimation of completely gen-
eral A matrix models.

Second, fixed effects results in a considerable loss of efficiency relative to random effects,
and in the "A same" model, the added restrictions implied by random effects over fixed
effects are not rejected.

Third, our baseline estimates of the scalar a are at or a little above 0.5. However, alter-
native model specifications, and nonstructural estimates based on reported life satisfaction,
suggest potentially higher spillovers of up to around 0.7. We also find evidence that particular
subgroups, especially poorer subgroups, have lower spillovers.
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7 Implications for Tax and Transfers Policy

Our peer effects finding that needs rise with group-average consumption (with a coefficient of
0.5 or more in most groups) has significant implications for policies regarding redistribution,
transfer systems, public goods provision, and economic growth. Like consumption rat race
models and “keeping up with the Jones” models, our model is one where consumption has
negative externalities, in our case, increasing perceived needs and thereby reducing the util-
ities of peers. Boskin and Shoshenski (1978) consider optimal redistribution in models with
general consumption externalities. They show that distortions due to negative externalities
from consumption onto utility can generally be corrected by optimal taxation. In particular,
their results imply that negative consumption externalities make the marginal cost of public
funds lower than it would otherwise be, so the optimal amount of redistribution is greater
than it would otherwise be.

The specific kind of consumption externality we estimate suggests advantages to using
tax money for providing public goods vs transfers. To the extent that jealousy or envy are
the underlying cause of the externalities we identify, public goods would not invoke those
effects, because by definition all people consume the same quantity of public goods. This
along with the Boskin and Shoshenski theorems suggests that public goods may be a partially
free lunch. That is, the money metric costs in lost utility of an across the board tax increase
are reduced by the peer effects channel, while the corresponding gains from spending that
tax revenue on public goods would likely not be reduced by peer effects. In contrast, tax
revenues that are spent on transfers do not have a similar free lunch, since the peer effects
induced gain in utility from the tax may be offset by a corresponding loss of utility in the
group of recipients of the transfers. However, there may still be some peer effects gains in
the transfers case, if the transfers go from rich groups to poorer ones, since we found that
the size of the peer effects spillovers may be smaller for poorer groups.

In India, a shift from subsidizing private goods consumption to subsidizing public goods
consumption would be a very big change. For example, the National Food Security Act
(NFSA), passed in 2013 and implemented beginning in 2015, will cost roughly 1.35% of
GDP (if and) when fully implemented. This program aims to provide subsidized cereals to
roughly 75 per cent of Indian households at roughly 1/3 of market price, and so, in our
framework aims to increase the consumption of necessities. Our estimates imply that the
resulting increased consumption would result in increased perceived needs, and so would
not raise utility as much as an alternative policy action that did not induce these negative
externalities. Such alternatives could be provision of public goods, i.e., policies that provide
resources to the poor but are equally available to all households. Such public goods might
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include clean water, public sanitation, better air quality, or better schools.
A back-of-the-envelope example would proceed as follows. The entitlement of rice under

the NFSA is up to 5 kg (kilograms) per month per person at 3 rupees per kg. Suppose
the market price of rice is 15 rupees per kg (as it was in 2016). Thus, the public cost of
providing this rice subsidy is about 12 rupees per kg, or 60 rupees per month per person.
We can bound each consumer’s behavioral response to the subsidy by noting that necessities
consumption could rise by as much as 60 rupees per month per person, or at the other
extreme, the consumer could choose to keep their rice consumption unchanged and spend
the 60 rupees per month on luxuries. The actual response would likely be somewhere in
between (a portion of the gain could also be saved, but that just implies spending it on
luxuries or necessities at some future date).

For simplicity in constructing bounds, suppose that in each group either everyone or
nobody qualifies for (or takes up) the NFSA entitlement. At one extreme, suppose every
consumer who gets the entitlement increases their necessities spending by 60 rupees per
person per month. Then, taking our baseline random-effects estimate of the spillover from
necessities of 0.57, we would have that the needs of every group member rises by 34 (0.57
times 60) rupees, resulting in an increase of only 60 - 34 = 26 rupees per consumer per month
in their money-metric utility. At the other extreme, if all consumers who get the entitlement
use all of the extra resources provided to buy luxuries, then corresponding spillover estimate is
0.46, which by a comparable calculation results in a 28 rupees increase in needs and therefore
a 60 - 28 = 32 rupees gain in utility per consumer. Thus the government’s expenditures of
60 rupees only increases money metric utility by 26 to 32 rupees (per person per month).
This is in contrast to a full benefit of 60 rupees per person per month that might be obtained
by provision of public goods7 The NFSA program targets roughly 1 billion people, yielding
potential money-metric welfare gains (of switching from rice subsidies to a public goods
program) of roughly 336 billion to 408 billion rupees per year.

Note that this calculation used our baseline estimate of 0.57 for the spillovers. Since it is
poorer households that receive the NFSA ration cards, it may be that the more appropriate
estimate of peer effects to use is 0.26 or 0.32, the estimates we obtained for just poorer
households. In that case the benefits of switching to public goods we calculated above may
be halved, but that still corresponds to money metric savings of billions of over 160 billion

7An important caveat is that the benefits of this alternative might be reduced to the extent that some
households derive less utility from the public good than others, but may also be increased to the extent
that people in groups that did not qualify for or take up the rice entitlement might benefit from the public
good. The relative benefits might also be reduced or increased if peer expenditures have positive or negative
externalities that we are not measuring. Examples could include positive network effects from increased cell
phone ownership, or negative congestion effects from increased use of public roads.
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rupees per year. Also, if the difference in peer effects between rich and poor is that large,
then the NFSA program itself is much less expensive in money metric terms than it appears.
This is because, as noted above, the money metric utility loss due to peer effects among the
program’s recipients would be smaller than the corresponding gains among the richer groups
who pay most of the taxes that fund the program.

8 Conclusions

We show identification and GMM estimation of peer effects in a generic quadratic model,
using data where most members of each group might not be observed. The model allows for
fixed or random effects, and allows the number of observed individuals in each peer group
to be fixed asymptotically, so we obtain consistent estimates of the model even though peer
group means cannot be consistently estimated. Unlike most peer effects models, our model
can be estimated from standard cross section survey data where the vast majority of members
of each peer group are not observed, and detailed network structure is not provided.

We next provide a utility derived consumer demand model, where one’s perceived needs
for each commodity depend in part on the average consumption of one’s peers. We show
how this model can be used for welfare analysis, and in particular to identify what fraction of
income increases are spent on “keeping up with the Joneses” type peer effects. This demand
model, in which peer expenditures affect perceived needs, has a structure analogous to our
generic peer effects model, and so can be identified and estimated in the same way.

We apply the model to consumption data from India, and find large peer effects. Our
estimates imply that an increase in group-average spending of 100 rupees would induce an
increase in needs of 50 rupees or more in most peer groups. In this model, an increase in
needs is, from the individual consumer’s point of view, equivalent to a decrease in total
expenditures. These results could therefore at least partly explain the Easterlin (1974)
paradox, in that income growth over time, which increases people’s consumption budgets,
likely results in much less utility growth than standard demand model estimates (that ignore
these peer effects) would suggest.

These results also suggest that income or consumption taxes have far lower negative
effects on consumer welfare than are implied by standard models. This is because a tax that
reduces my expenditures by a dollar will, if applied to everyone in my peer group, have the
same effect on my utility as a tax of only 50 cents that ignores the peer effects. In short,
the larger these peer effects are, the smaller are the welfare gains associated with tax cuts or
mean income growth. This is particularly true to the extent that taxes are used to provide
public goods (that are less likely to induce peer effects) rather than transfers.
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Appendix: Derivations

9.1 Generic Model Identification and Estimation

Let yi denote an outcome and xi denote a K vector of regressors xki for an individual i. Let
i ∈ g denote that the individual i belongs to group g. For each group g, assume we observe
ng =

∑
i∈g 1 individuals, where ng is a small fixed number which does not go to infinity. Let

yg = E (yi | i ∈ g), ŷg,−ii′ =
∑

l∈g,l 6=i,i′ yl/(ng − 2), and εyg,−ii′ = ŷg,−ii′ − yg, so yg is the true
group mean outcome and ŷg,−ii′ is the observed leave-two-out group average outcome in our
data, and εyg,−ii′ is the estimation error in the leave-two-out sample group average. Define
xg = E (xi | i ∈ g), xx′g = E (xix

′
i | i ∈ g), and similarly define x̂g,−ii′ , x̂x′g,−ii′ , εxg,−ii′ and

εxxg,−ii′ analogously to ŷg,−ii′ , and εyg,−ii′ .
Consider the following single equation model (the multiple equation analog is discussed

later). For each individual i in group g, let

yi =
(
yga+ x′ib

)2
d+

(
yga+ x′ib

)
+ vg + ui (25)

where vg is a group level fixed effect and ui is an idiosyncratic error. The goal here is
identification and estimation of the effects of yg and xi on yi, which means identifying the
coefficients a, b, and d.

We could have written the seemingly more general model

yi =
(
yga+ x′ib + h

)2
d+

(
yga+ x′ib + h

)
k + vg + ui

where h and k are additional constants to be estimated. However, it can be shown that by
suitably redefining the fixed effect vg and the constants a, b, and d, that this equation is
equivalent either to equation (25) or to yi =

(
yga+ x′ib

)2
+vg+ui. Since this latter equation

is strictly easier to identify and estimate, and is irrelevant for our empirical application, we
will rule it out and therefore without loss of generality replace the more general model with
equation (25).

Next observe that, regardless of what we assume about within group or between group
sample sizes, if this model were linear (i.e., d = 0), then we would not be able to identify the
effect of yg on yi, i.e., we would not be able to identify the peer effect. This is because, if
d = 0, then there is no way to separate yg from the group level fixed effect vg. All values of a
would be observationally equivalent, by suitable redefinitions of vg. This is a manifestation
of the reflection problem, which we overcome by a combination of nonlinearity and functional
form restrictions.
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We assume that the number of groups G goes to infinity, but we do NOT assume that
ng goes to infinity, so ŷg,−ii′ is not a consistent estimator of yg. We instead treat εyg,−ii′ =

ŷg,−ii′−yg as measurement error in ŷg,−ii′ , which is not asymptotically negligible. This makes
sense for data like ours where only a small number of individuals are observed within each
peer group. This may also be a sensible assumption in many standard applications where
true peer groups are small. For example, in a model where peer groups are classrooms,
failure to observe a few children in a class of one or two dozen students may mean that the
observed class average significantly mismeasures the true class average.

Formally, our first identification theorem makes assumptions A1 to A3 below.

Assumption A1: Each individual i in group g satisfies equation (25). xi is a K-
dimensional vector of covariates. For each k ∈ {1, ..., K}, for each group g with i ∈ g and
i′ ∈ g, Pr (xik = xi′k) > 0. Unobserved vg are group level fixed effects. Unobserved errors
ui are independent across groups g and have E(ui |all xi′ having i′ ∈ g where i ∈ g) = 0.
The number of observed groups G → ∞. For each observed group g, we observe a sample
of ng ≥ 3 observations of yi,xi.

Assumption A1 essentially defines the model. Note that Assumption A1 does not require
that ng → ∞. We can allow the observed sample size ng in each group g to be fixed, or to
change with the number of groups G. The true number of individuals comprising each group
is unknown and could be finite.

Assumption A2: The coefficients a, b, d are unknown constants satisfying d 6= 0, b 6= 0,
and [1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg] ≥ 0.

In Assumption A2, as discussed above d 6= 0 is needed to avoid the reflection problem.
Having b 6= 0 is necessary since otherwise we would have nothing exogenous in the model.
Finally, note that the inequality in Assumption A2 takes the form of a simple lower or upper
bound (depending on the sign of d) on each fixed effect vg. This inequality must hold to
ensure that an equilibrium exists for each group, thereby avoiding Tamer’s (2003) potential
incoherence problem. To see this, plug equation (25) for yi into yg = E (yi | i ∈ g). This
yields a quadratic in yg, which, if a 6= 0, has the solution

yg =
1− a(2b′xgd+ 1)±

√
[1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg]

2a2d
(26)

if the inequality in Assumption A2 is satisfied (while if a does equal zero, then the model
will be trivially identified because in that case there aren’t any peer effects). We do not take
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a stand on which root of equation (26) is chosen by consumers, we just make the following
assumption.

Assumption A3: Individuals within each group agree on an equilibrium selection rule.

For identification, we need to remove the fixed effect from equation (25), which we do by
subtracting off another individual in the same group. For each (i, i′) ∈ g, consider pairwise
difference

yi − yi′ = 2adygb
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′) + ui − ui′

= 2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′)

+ ui − ui′ − 2adεyg,−ii′b
′(xi − xi′), (27)

where the second equality is obtained by replacing yg on the right hand side with ŷg,−ii′ −
εyg,−ii′ . In addition to removing the fixed effects vg, the pairwise difference also removed
the linear term ayg, and the squared term da2y2

g. The second equality in equation (27)
shows that yi − yi′ is linear in observable functions of data, plus a composite error term
ui − ui′ − 2adεyg,−ii′b

′(xi − xi′) that contains both εyg,−ii′ and ui − ui′ . By Assumption
A1, ui − ui′ is conditionally mean independent of xi and xi′ . It can also be shown (see the
Appendix) that

εyg,−ii′ = 2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ .

where

εxg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

(xl − xg) ; εxxg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

(
xlx

′
l − xx′g

)
.

Substituting this expression into equation (27) gives an expression for yi − yi′ that is linear
in ŷg,−ii′(xi − xi′), (xix

′
i − xi′x

′
i′), (xi − xi′), and a composite error term.

In addition to the conditionally mean independent errors ui− ui′ and ûg,−ii′ , the compo-
nents of this composite error term include εxg,−ii′ and εxxg,−ii′ , which are measurement errors
in group level mean regressors. If we assumed that the number of individuals in each group
went to infinity, then these epsilon errors would asymptotically shrink to zero, and the the
resulting identification and estimation would be simple. In our case, these errors do not go
to zero, but one might still consider estimation based on instrumental variables. This will
be possible with further assumptions on the data.

In the next assumption we allow for the possibility of observing group level variables rg
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that may serve as instruments for ŷg,−ii′ . Such instruments may not be necessary, but if such
instruments are available (as they will be in our later empirical application), they can help
both in weakening sufficient conditions for identification and for later improving estimation
efficiency.

Assumption A4: Let rg be a vector (possibly empty) of observed group level instru-
ments that are independent of each ui. Assume E

(
(xi − xg) | i ∈ g,xg,xx′g, vg, rg

)
= 0,

E
((

xix
′
i − xx′g

)
| i ∈ g, rg

)
= 0, and that xi − xg and xix

′
i − xx′g are independent across

individuals i.

Assumption A4 corresponds to (but is a little stronger than) standard instrument validity
assumptions. A sufficient condition for the equalities in Assumption A4 to hold is let εix =

xi − xg be independent across individuals, and assume that E(εix | xg,xx′g, vg, rg for i ∈
g) = 0 and E (εixε

′
ix | xg, rg for i ∈ g) = E (εixε

′
ix | i ∈ g). To see this, we have

E(xix
′
i − xx′g | i ∈ g,xg, rg) = E[(εix + xg)(εix + xg)

′ | i ∈ g,xg, rg]− xx′g

= E(εixε
′
ix | i ∈ g,xg, rg) + E(xi|i ∈ g)E(x′i|i ∈ g)− E(xix

′
i|i ∈ g)

= E(εixε
′
ix | i ∈ g,xg, rg)− E(εixε

′
ix|i ∈ g)

A simpler but stronger sufficient condition would just be that εix are independent across
individuals i and independent of group level variables xg,xx′g, vg, rg. Essentially, this corre-
sponds to saying that any individual i in group g has a value of xi that is a randomly drawn
deviation around their group mean level xg. The first two equalities in A4 are used to show
that E (εyg,−ii′ | rg) = 0, and the independence of measurement errors across individuals is
used to show E (εyg,−ii′(xi − xi′) | rg,xi,xi′) = (xi − xi′)E (εyg,−ii′ | rg) = 0, so that xi and
xi′ are valid instruments. Given Assumptions A1 and A4, one can directly verify that

E [yi − yi′ − (2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′)) | rg,xi,xi′ ] = 0.

(28)
Under Assumptions A1 to A4, (xi − xi′)E(ŷg,−ii′ |rg,xi,xi′) is linearly independent of

(xi − xi′) and (xix
′
i − xi′x

′
i′) with a positive probability. These conditional moments could

therefore be used to identify the coefficients 2adb, b1db,...bKdb, and b, which we could then
immediately solve for the three unknowns a, b, d. Note that we have K + 2 parameters
which need to be estimated, and even if no rg are available, we have 2K instruments xi

and xi′ . The level of xi as well as the difference xi − xi′ may be useful as an instrument
(and nonlinear functions of xi can be useful), because (26) shows that yg and hence ŷg,−ii′ is
nonlinear in xg, and xi is correlated with xg by xi = εix + xg.
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The above derivations outline how we obtain identification, while the formal proof is
given in Theorem 1 below (details are provided in the Appendix). To simplify estimation,
we construct unconditional rather than conditional moments for identification and later
estimation. Let rgii′ denote a vector of any chosen functions of rg, xi, and xi′ , which we will
take as an instrument vector. It then follows immediately from equation (28) that

E
[(
yi − yi′ − (1 + 2adŷg,−ii′)

∑K
k=1bk(xki − xki′)− d

∑K
k=1

∑K
k′=1bkbk′(xkixk′i − xki′xk′i′)

)
rgii′
]

= 0.

(29)
Let

L1gii′ = (yi − yi′), L2kgii′ = (xki − xki′),

L3kgii′ = ŷg,−ii′(xki − xki′), L4kk′gii′ = xkixk′i − xki′xk′i′

Equation (29) is linear in these L variables and so could be estimated by GMM. This linearity
also means they can be aggregated up to the group level as follows. Define

Γg = {(i, i′) | i and i′ are observed, i ∈ g, i′ ∈ g, i 6= i′}

So Γg is the set of all observed pairs of individuals i and i′ in the group g. For ` ∈
{1, 2k, 3k, 4kk′ | k, k′ = 1, ..., K}, define vectors

Y`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1

Then averaging equation (29) over all (i, i′) ∈ Γg gives the unconditional group level moment
vector

E
(
Y1g −

∑K
k=1bkY2kg − 2ad

∑K
k=1bkY3kg − d

∑K
k=1

∑K
k′=1bkbk′Y4kk′g

)
= 0. (30)

Suppose the instrumental vector rgii′ is q dimensional. Denote the q× (K2 + 2K) matrix
Yg = (Y21g, ...Y2Kg,Y31g, ...Y3Kg,Y411g, · · · ,Y4KKg). The following assumption ensures
that we can identify the coefficients in this equation.

Assumption A5: E(Y′g)E(Yg) is nonsingular.

Theorem 1. Given Assumptions A1, A2, A3, A4, and A5, the coefficients a, b, d are
identified.

As noted earlier, Assumptions A1 to A4 should generally suffice for identification. As-
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sumption A5 is used to obtain more convenient identification based on unconditional mo-
ments. Assumption A5 is itself stronger than necessary, since it would suffice to identify
arbitrary coefficients of the Y variables, ignoring all of the restrictions among them that are
given by equation (30).

Given the identification in Theorem 1, based on equation (30) we can immediately con-
struct a corresponding group level GMM estimator

(
â, b̂1, ...̂bK , d̂

)
= arg min

[
1

G

G∑
g=1

(
Y1g −

∑K
k=1bkY2kg − 2ad

∑K
k=1bkY3kg − d

∑K
k=1

∑K
k′=1bkbk′Y4kk′g

)]′

· Ω̂

[
1

G

G∑
g=1

(
Y1g −

∑K
k=1bkY2kg − 2ad

∑K
k=1bkY3kg − d

∑K
k=1

∑K
k′=1bkbk′Y4kk′g

)]
(31)

for some positive definite moment weighting matrix Ω̂. In equation (31), each group g

corresponds to a single observation, the number of observations within each group is assumed
to be fixed, and recall we have assumed the number of groups G goes to infinity. Since this
equation has removed the vg terms, there is no remaining correlation across the group level
errors, and therefore standard cross section GMM inference will apply. Also, with the number
of observed individuals within each group held fixed, there is no loss in rates of convergence
by aggregating up to the group level in this way.

One could alternatively apply GMM to equation (29), where the unit of observation
would then be each pair (i, i′) in each group. However, when doing inference one would then
need to use clustered standard errors, treating each group g as a cluster, to account for the
correlation that would, by construction, exist among the observations within each group. In
this case,

(
â, b̂1, ...̂bK , d̂

)
= arg min

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)′
Ω̂

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)
, (32)

where

mgii′ = L1gii′rgii′ −
∑K

k=1bkL2kgii′rgii′ − 2ad
∑K

k=1bkL3kgii′rgii′ − d
∑K

k=1

∑K
k′=1bkbk′L4kk′gii′rgii′ .

The remaining issue is how to select the vector of instruments rgii′ , the elements of which
are functions of rg,xi,xi′ chosen by the econometrician. Based on equation (29), rgii′ should
include the differences xki − xki′ and xkixk′i − xki′xk′i′ for all k, k′ from 1 to K, and should
include terms that will correlate with ŷg,−ii′(xki − xki′). Using equation (26) as a guide for
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what determines yg and hence what should correlate with ŷg,−ii′ , suggests that rgii′ could
include, e.g., xki(xki − xki′) or x1/2

ki (xki − xki′).
We might also have available additional instruments rg that come from other data sets.

A strong set of instruments for ŷg,−ii′(xki−xki′) could be (xki−xki′)rg, where rg is a vector of
one or more group level variables that are correlated with yg, but still satisfy Assumption A4.
One such possible rg is a vector of group means of functions of x that are constructed using
individuals that are observed in the same group as individual i, but in a different time period
of our survey. For example, we might let rg include x̂gt· =

∑
s6=t
∑

i∈gs xi/
∑

s6=t
∑

i∈gs 1 where
s indicates the period and t is the current period. In our empirical application, since the
data take the form of repeated cross sections rather than panels, different individuals are
observed in each time period. So x̂gt· is just an estimate of the group mean of xg, but based
on data from time periods other than one used for estimation. This produces the necessary
uncorrelatedness (instrument validity) conditions in Assumption A4. The relevance of these
instruments (the nonsingularity condition in Assumption A5) will hold as long as group
level moments of functions of x in one time period are correlated with the same group level
moments in other periods.

In our later empirical application, what corresponds to the vector xi here includes the
total expenditures, age, and other characteristics of a consumer i, so Assumptions A4 and A5
will hold if the distribution of income and other characteristics within groups are sufficiently
similar across time periods, while the specific individuals within each group who are sampled
change over time. The nonlinearity of yg in equation (26) shows that additional nonlinear
functions of x̂gt·, could also be valid and potentially useful additional instruments.

9.2 Proof of Theorem 1

We first show that we may without loss of generality assume c = 0 and k = 1 the single
equation generic model. Suppose that

yi =
(
yga+ x′ib + c

)2
d+

(
yga+ x′ib + c

)
k + vg + ui

One can readily check that this model can be rewritten as

yi =
(
yga+ x′ib

)2
d+ (2cd+ k)

(
yga+ x′ib

)
+ c2d+ ck + vg + ui.

If 2cd + k 6= 0 then this equation is identical to equation (25), replacing the fixed effect vg
with the fixed effect ṽg = c2d+ ck + vg, and replacing the constants a, b, d, with constants
ã, b̃, d̃ defined by ã = (2cd+ k) a, b̃ = (2cd+ k) b, and d̃ = d/ (2cd+ k)2. If 2cd + k = 0,

49



then by letting ṽg = c2d+ ck+ vg this equation becomes yi =
(
yga+ x′ib

)2
d+ ṽg +ui, which

is the case we have already ruled out.
We next derive the equilibrium of yg. Expanding equation (25), we have

yi = y2
gda

2 + a(2dx′ib + 1)yg + b′xix
′
ibd+ x′ib + vg + ui (33)

Taking the within group expected value of this expression gives

yg = y2
gda

2 + a(2db′xg + 1)yg + db′xx′gb + b′xg + vg. (34)

so the equilibrium value of yg must satisfy this equation for the model to be coherent. If
a = 0, then we get yg = db′xx′gb + b′xg + vg which exists and is unique. If a 6= 0, meaning
that peer effects are present, then equation (34) is a quadratic with roots

yg =
1− a(2b′xgd+ 1)±

√
[1− a(2b′xgd+ 1)]2 − 4a2d[db′xx′gb + b′xg + vg]

2a2d
.

The equilibrium of yg therefore exists under Assumption A2 and is unique under Assumption
A3. Note that regardless of whether a = 0 or not, yg is always a function of xg, xx′g, and vg.

We now derive an expression for the measurement error εyg,−ii′ . From equation (33), we
have the group average

ŷg,−ii′ = y2
gda

2 + a(2db′x̂g,−ii′ + 1)yg + b′x̂x′g,−ii′bd+ b′x̂g,−ii′ + vg + ûg,−ii′ .

Subtracting equation (34) then gives the measurement error

εyg,−ii′ = ŷg,−ii′ − yg =
1

ng − 2

∑
l 6=i,i′,l∈g

[2adygb
′(xl − xg) + b′(xlx

′
l − xx′g)bd+ b′(xl − xg) + ul]

= 2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ .

Given the above results, we can now proceed with identification of the parameters. Sub-
stituting the above into the yi − yi′ gives

yi − yi′ = 2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′) + Uii′ ,

where

Uii′ = ui − ui′ − 2ad(2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′)b

′(xi − xi′).

50



Under Assumption A4, for each i ∈ g, E
(
(xi − xg) | xg,xx′g, vg, rg

)
= 0, and with its

independence across individuals, we have

E
(
ygεxg,−ii′(xi − xi′)

′ | rg,xi,xi′
)

= E
(
ygE(εxg,−ii′ | xg,xx′g, vg, rg,xi,xi′)(xi − xi′)

′)
= E

(
ygE

(
εxg,−ii′ | xg,xx′g, vg, rg, εixg, εi′xg

)
(xi − xi′)

′) = 0.

Together with E (εxxg,−ii′(xi − xi′) | rg,xi,xi′) = 0, E (εxg,−ii′(xi − xi′) | rg,xi,xi′) = 0, and
E(ûg,−ii′(xi − xi′)) = 0, we have E(Uii′ |rg,xi,xi′) = 0 and hence,

E [yi − yi′ − (2adŷg,−ii′b
′(xi − xi′) + db′(xix

′
i − xi′x

′
i′)b + b′(xi − xi′)) |rg,xi,xi′ ] = 0

For ` ∈ {1, 2k, 3k, 4kk′ | k, k′ = 1, ..., K}, define vectors Y`g as Section 4 and we have the
group level moment condition

E
(
Y1g −

∑K
k=1bkY2kg − 2ad

∑K
k=1bkY3kg − d

∑K
k=1

∑K
k′=1bkbk′Y4kk′g

)
= 0. (35)

Then, using the nonsingularity in Assumption A5, we have a, b, d identified from

(b′, 2adb′, db1b
′, · · · , dbKb′)

′
=
[
E(Y′g)E(Yg)

]−1 · E(Y′g)E (Y1g) ,

where Yg = (Y21g, ...Y2Kg,Y31g, ...Y3Kg,Y411g, · · · ,Y4KKg) .

9.3 Multiple Equation Generic Model With Fixed Effects

Our actual demand application has a vector of J outcomes and a corresponding system of J
equations. Extending the generic model to a multiple equation system introduces potential
cross equation peer effects, resulting in more parameters to identify and estimate. Let
yi = (y1i, ..., yJi) be a J-dimensional outcome vector, where yji denotes the j’th outcome for
individual i. Then we extend the single equation generic model to the multi equation that
for each good j,

yji = (y′gaj + x′ibj)
2dj +

(
y′gaj + x′ibj

)
+ vjg + uji, (36)

where yg = E(yi|i ∈ g) and aj = (a1j, ..., aJj)
′ is the associated J-dimensional vector of

peer effects for jth outcome (which in our application is the jth good). We now show that
analogous derivations to the single equation model gives conditional moments

E
(
(yji − yji′ − 2djŷ

′
g,−ii′aj(xi − xi′)

′bj − djb′j(xix′i − xi′x
′
i′)bj − (xi − xi′)

′bj) | rg,xi,x′i
)

= 0.
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Construction of unconditional moments for GMM estimation then follows exactly as before.
The only difference is that now each outcome equation contains a vector of coefficients aj

instead of a single a. To maximize efficiency, the moments used for estimating each outcome
equation can be combined into a single large GMM that estimates all of the parameters for
all of the outcomes at the same time.

From

yji = dj(y
′
gaj)

2 + 2y′gajdjx
′
ibj + b′jxix

′
ibjdj + y′gaj + x′ibj + vjg + uji,

we have the equilibrium

yjg = dj(y
′
gaj)

2 + 2djy
′
gajx

′
gbj + b′jxx′gbjdj + y′gaj + x′gbj + vjg

and the leave-two-out group average

ŷjg,−ii′ = dj(y
′
gaj)

2 + 2djy
′
gajx̂

′
g,−ii′bj + b′jx̂x′g,−ibjdj + y′gaj + x̂′g,−ii′bj + vjg + ûjg,−ii′ .

Therefore, the measurement error is

εyjg,−ii′ = ŷjg,−ii′ − yjg = 2djy
′
gajε

′
xg,−ii′bj + b′jεxxg,−ii′bjdj + ε′xg,−ii′bj + ûjg,−ii′ .

Using the same analysis as before,

yji − yji′ = 2djy
′
gaj(xi − xi′)

′bj + djb
′
j(xix

′
i − xi′x

′
i′)bj + (xi − xi′)

′bj + uji − uji′

= 2djŷ
′
g,−ii′aj(xi − xi′)

′bj + djb
′
j(xix

′
i − xi′x

′
i′)bj + (xi − xi′)

′bj + uji − uji′

− 2djε
′
yg,−ii′aj(xi − xi′)

′bj.

Therefore, for j = 1, ..., J , we have the moment condition

E
(
(yji − yji′ − (xi − xi′)

′bj − 2djŷ
′
g,−ii′aj(xi − xi′)

′bj − djb′j(xix′i − xi′x
′
i′)bj)|rgii′

)
= 0.

Denote

L1jgii′ = (yji − yji′), L2kgii′ = (xki − xki′),

L3jkgii′ = ŷjg,−ii′(xki − xki′), L4kk′gii′ = xkixk′i − xki′xk′i′ .
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For ` ∈ {1j, 2k, 3jk, 4kk′ | j = 1, ..., J ; k, k′ = 1, ..., K}, define vectors

Y`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1

and the identification comes from the group level unconditional moment equation

E
(
Y1jg −

∑K
k=1bjkY2kg − 2dj

∑J
j′=1

∑K
k=1ajj′bjkY3j′kg − dj

∑K
k=1

∑K
k′=1bjkbjk′Y4kk′g

)
= 0,

where bjk is the kth element of bj and ajj′ is the j′th element of aj.

Let Yg = (Y21g, ...Y2Kg,Y311g,Y312g, ...Y3JKg,Y411g, · · · ,Y4KKg) . If E (Yg)
′E (Yg) is

nonsingular, for each j = 1, ..., J , we can identify

(b′j, 2aj1djb
′
j, ..., 2ajJdjb

′
j, djbj1b

′
j, ..., djbjKb′j)

′ =
[
E (Yg)

′E (Yg)
]−1 · E (Yg)

′E (Y1jg) .

From this, bj, dj, and aj can be identified for each j = 1, ..., J .
For a single large GMM that estimates all of the parameters for all of the outcomes at

the same time, we construct the group level GMM estimation based on

(
â′1, ..., â

′
J , b̂

′
1, ...b̂

′
J , d̂1, ..., d̂J

)′
= arg min

(
1

G

G∑
g=1

mg

)′
Ω̂

(
1

G

G∑
g=1

mg

)
,

where Ω̂ is some positive definite moment weighting matrix and

mg =


Y11g

...
Y1Jg

−


K∑
k=1

b1kY2kg

...
K∑
k=1

bJkY2kg

−2


d1

J∑
j′=1

K∑
k=1

a1j′b1kY3j′kg

...

dJ
J∑

j′=1

K∑
k=1

aJj′bJkY3j′kg

−


d1

K∑
k=1

K∑
k′=1

b1kb1k′Y4kk′g

...

dJ
K∑
k=1

K∑
k′=1

bJkbJk′Y4kk′g


is a qJ−dimensional vector.

Alternatively, we can construct the individual level GMM estimation using the group
clustered standard errors

(
â′1, ..., â

′
J , b̂

′
1, ...b̂

′
J , d̂1, ..., d̂J

)′
= arg min

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)′
Ω̂

(∑G
g=1

∑
(i,i′)∈Γg

mgii′∑G
g=1

∑
(i,i′)∈Γg

1

)
,
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where

mgii′ =


L11gii′rgii′

...
L1Jgii′rgii′

−


K∑
k=1

b1kL2kgii′rgii′

...
K∑
k=1

bJkL2kgii′rgii′

− 2


d1

J∑
j′=1

K∑
k=1

a1j′b1kL3j′gii′rgii′

...

dJ
J∑

j′=1

K∑
k=1

aJj′bJkL3j′gii′rgii′



−


d1

K∑
k=1

K∑
k′=1

b1kb1k′L4kk′gii′rgii′

...

dJ
K∑
k=1

K∑
k′=1

bJkbJk′L4kk′gii′rgii′

 .

9.4 Multiple Equation Generic Model With Random Effects

Here we provide the derivation of equation (12), thereby showing validity of the moments
used for random effects estimation. As with fixed effects, we here extend the model to allow
a vector of covariates xi. We begin by rewriting the generic model with vector xi, equation
(25).

yi = y2
ga

2d+ a (1 + 2b′xid) yg + b′xi + b′xix
′
ibd+ vg + ui, (37)

We now add the assumption that vg is independent of x and u, making it a random effect.
Taking the expectation of this expression given being in group g gives

yg = y2
gda

2 + a(2db′xg + 1)yg + db′xx′gb + b′xg + µ, (38)

where µ = E(vg). Hence, the group mean yg is an implicit function of xg and xx′g.
Define measurement errors εxl = xl − xg, εxxl = xlx

′
l − xx′g, and εyg,−ii′ = ŷg,−ii′ − yg.

For any i′ ∈ g, the measurement error εyi′ = yi′ − yg is

εyi′ = 2adygb
′(xi′ − xg) + db′(xi′x

′
i′ − xx′g)b + b′(xi′ − xg) + ui′ + vg

= 2adygb
′εxi′ + db′εxxi′b + b′εxi′ + ui′ + vg − µ.

and so the measurement error εyg,−ii′ = ŷg,−ii′ − yg is

εyg,−ii′ = ŷg,−ii′ − yg = 2adygb
′εxg,−ii′ + b′εxxg,−ii′bd+ b′εxg,−ii′ + ûg,−ii′ + vg − µ.
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Next define ε̃gii′ by

ε̃gii′ =
(
y2
g − ŷg,−ii′yi′

)
a2d+ a (1 + 2b′xid)

(
yg − ŷg,−ii′

)
,

so
yi = ŷg,−ii′yi′a

2d+ a (1 + 2b′xid) ŷg,−ii′ + b′xi + b′xix
′
ibd+ vg + ui + ε̃gii′ . (39)

Then

ε̃gii′ =
(
y2
g − (yg + εyg,−ii′)(yg + εyi′)

)
a2d− a (1 + 2b′xid) εyg,−ii′

= −(εyg,−ii′ + εy,i′)yga
2d− εyg,−ii′εy,i′a2d− a (1 + 2b′xid) εyg,−ii′ .

Make the following assumptions.

Assumption C1: For any individual l, vg is independent of (xl,xg,xx′g), the error term
ul, and measurement errors εxl and εxxl.

Assumption C2: For each individual l in group g, conditional on (xg,xx′g) the mea-
surement errors εxl and εxxl are independent across individuals and have zero means.

Assumption C3: For each group g, vg is independent across groups with E(vg|x,xg,xx′g) =

µ and we have the conditional homoskedasticity that V ar(vg|x,xg,xx′g) = σ2.

Let v0 = µ−da2σ2. It follows from these assumptions that, for any l 6= i, E(ygεyl|xi,xg,xx′g) =

0 and E(εylxi|xi,xg,xx′g) = 0. Hence, E(ε̃gii′|xi,xg,xx′g) = −da2E(εyg,−ii′εy,i′|xi,xg,xx′g) =

−da2V ar (vg) and

E(vg + ui + ε̃gii′ | xg,xx′g,xi) = µ− da2σ2 = v0. (40)

By construction vg+ui+ ε̃gii′ is also independent of rg. Given this, equation (12) then follows
from equations (39) (40).

9.5 Identification of the Demand System With Fixed Effects

Here we outline how the parameters of the demand system are identified. This is followed
by the formal proof of identification, based on the corresponding moments we construct for
estimation. As with the generic model, equation (17) entails the complications associated
with nonlinearity, and the issues that the fixed effects vg correlate with regressors, and that
qg is not observed. As before, let ng denote the number of consumers we observe in group
g. Assume ng ≥ 3. The actual number of consumers in each group may be large, but we
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assume only a small, fixed number of them are observed. Our asymptotics assume that the
number of observed groups goes to infinity as the sample size grows, but for each group g,
the number of observed consumers ng is fixed. We may estimate qg by a sample average of qi

across observed consumers in group i, but the error in any such average is like measurement
error, that does not shrink as our sample size grows.

We show identification of the parameters of the demand system (17) in two steps. The
first step identifies some of the model parameters by closely following the identification
strategy of our simpler generic model, holding prices fixed. The second step then identifies
the remaining parameters based on varying prices. We summarize these steps here, then
provide formal assumptions and proof of the identification in the next section.

For the first step, consider data just from a single time period and region, so there
is no price variation and p can be treated as a vector of constants. Let α = A′p, β =

p1/2′Rp1/2, γ̃ = C̃′p, κ = D′p, δ = b/p, rj = rjj + 2
∑

k>j rjkp
−1/2
j p

1/2
k , and m =(

e−b
′ lnp
)
d/p with constraints of b′1 = 1 and d′1 = 0. Then equation (17) reduces to

the system of Engel curves

qi =
(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)2
m +

(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)
δ (41)

+ r + Aqg + C̃z̃i + Dz̃g + vg + ui,

This has a very similar structure to the generic multiple equation system of equations (36),
and we proceed similarly.

Define ṽg =
(
α′qg + β + κ′z̃g

)2
m −

(
α′qg + β + κ′z̃g

)
δ + r + Aqg + Dz̃g + vg. Then

equation (41) can be rewritten more simply as

qi = (xi − γ̃′z̃i)2
m− 2 (xi − γ̃′z̃i)

(
α′qg + β + κ′z̃g

)
m + (xi − γ̃′z̃i) δ+ C̃z̃i + ṽg + ui, (42)

Here the fixed effect vg has been replaced by a new fixed effect ṽg. As in the generic fixed
effects model, we begin by taking the difference qji − qji′ for each good j ∈ {1, ..., J} and
each pair of individuals i and i′ in group g. This pairwise differencing of equation (42) gives,
for each good j,

qji − qji′ =
(

(xi − γ̃′z̃i)2 − (xi′ − γ̃′z̃i′)2
)
mj + c̃′j(z̃i − z̃i′)

+
[
δj − 2mj

(
α′qg + β + κ′z̃g

)]
[(xi − γ̃′z̃i)− (xi′ − γ̃′z̃i′)] + (uji − uji′)

where c̃′j equals the j’th row of C̃. Then, again as in the generic model, we replace the
unobservable true group mean qg with the leave-two-out estimate q̂g,−ii′ = 1

ng−2

∑
l∈g,l 6=i,i′

ql,
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which then introduces an additional error term into the above equation due to the difference
between q̂g,−ii′ and qg.

Define group level instruments rg as in the generic model. In particular, rg can include z̃g,
group averages of xi and of zi, using data from individuals i that are sampled in other time
periods than the one currently being used for Engel curve identification. Define a vector of
instruments rgii′ that contains the elements rg, xi, z̃i, xi′ , z̃i′ , and squares and cross products
of these elements. We then, analogous to the generic model, obtain unconditional moments

0 = E{[(qji − qji′)−
(

(xi − γ̃′z̃i)2 − (xi′ − γ̃′z̃i′)2
)
mj − c̃′j(z̃i − z̃i′)

− (δj − 2mj(α
′q̂g,−ii′ + β + κ′z̃g)) ((xi − γ̃′z̃i)− (xi′ − γ̃′z̃i′))]rgii′}. (43)

Combining common terms, we have

0 = E{[(qji − qji′)− (x2
i − x2

i′)mj + 2 (xiz̃i − xi′ z̃i′)′ γ̃mj − γ̃′(z̃iz̃′i − z̃i′ z̃
′
i′)γ̃mj

−
(
c̃′j − (δj − 2mjβ)γ̃′

)
(z̃i − z̃i′)− (δj − 2mjβ) (xi − xi′)

+ 2mj (α′q̂g,−ii′ + κ′z̃g) (xi − xi′)− 2 (z̃i − z̃i′)
′ γ̃mj (α′q̂g,−ii′ + κ′z̃g)]rgii′}. (44)

From the above equation, for each j = 1,...,J − 1, mj can be identified from the variation
in (x2

i − x2
i′), γ̃mj can be identified from the variation in xi (z̃i′ − z̃i), δj − 2mjβ and c̃′j −

(δj − 2mjβ)γ̃′ can be identified from the variation in xi − xi′ and z̃i − z̃i′ ; mjα and mjκ

are identified from the variation in q̂g,−ii′ (xi − xi′) and z̃g (xi − xi′) . To summarize, γ̃, α,
κ mj, δj − 2mjβ, and c̃′j are identified for each j = 1,...,J − 1, given sufficient variation in
the covariates and instruments. Let η = δ−2mβ. As

∑J
j=1mjpj =

(
e−b

′ lnp
)∑J

j=1 dj = 0

and
∑J

j=1 ηjpj =
∑J

j=1 bj = 1, m and η are identified. Also c̃J can be identified from

c̃J =
(
γ̃ −

∑J−1
j=1 c̃jpj

)
/pJ and hence C̃, γ̃, α, κ, m, and η = δ−2mβ are identified. We

now employ price variation to identify the remaining parameters.
Assume we observe data from T different price regimes. Let P be the matrix consisting

of columns pt for t = 1, ..., T . The above Engel curve identification can be applied separately
in each price regime t, so the Engel curve parameters that are functions of pt are now given
t subscripts.

Denote the parameters to be identified in R as (r11, ..., rJJ , r12, ..., rJ−1,J) and b as
(b1, ..., bJ−1). This is a total of [J − 1 + J(J + 1)/2] parameters. Given T price regimes,
we have (J − 1)T equations for these parameters: δjt = bj/pjt, mjt =

(
e−b

′ lnpt
)
dj/pjt and

βt = p
1/2′
t Rp

1/2
t for each j and T , since mjt and δjt − 2mjtβt are already identified. So for

large enough T , that is, T ≥ 1 + J(J+1)
2(J−1)

, we get more equations than unknowns, allowing
R and b to be identified given a suitable rank condition. Once b is identified, dj is then
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identified from dj = pjmje
b′ lnp for j = 1, ..., J − 1 and dJ = −

∑J−1
j=1 dj. In our data, prices

vary by time and region, yielding T much higher than necessary.
We now formalize the above steps, starting from the Engel curve model without price

variation. This Engel curve model is

qi = x2
im + (γ̃′z̃iz̃

′
iγ̃) m + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xi − γ̃′z̃i)

− 2mγ̃′z̃ixi +
(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)
δ + r + Aqg + C̃z̃i + Dz̃g + vg + ui,

from which we can construct

qg = x2
gm +

(
γ̃′zz′gγ̃

)
m + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xg − γ̃′zg)

− 2mγ̃′xzg +
(
xg − β − α′qg − γ̃′zg − κ′z̃g

)
δ + r + Aqg + C̃zg + Dz̃g + vg;

q̂g,−ii′ = x̂2
g,−ii′m + (γ̃′ẑz′g,−ii′ γ̃)m + m(α′qg + κ′z̃g + β)2 − 2m(α′qg + κ′z̃g + β) (x̂g,−ii′ − γ̃′ẑg,−ii′)

−2mγ̃′ẑxg,−ii′ + (x̂g,−ii′ − β − α′qg − γ̃′ẑg,−ii′ − κ′z̃g)δ + r + Aqg + C̃ẑg,−ii′ + vg + ûg,−ii′ .

Hence,

εqg,−ii′ = q̂g,−ii′ − qg = εx2g,−ii′m + γ̃′εzzg,−ii′ γ̃m−2m
(
α′qg + κ′z̃g + β

)
(εxg,−ii′ − γ̃′εzg,−ii′)

−2mγ̃′εzxg,−ii′ + δεxg,−ii′ + (C̃−δγ̃′)εzg,−ii′ + ûg,−ii′ .

Pairwise differencing gives

qi − qi′ = (x2
i − x2

i′)m + [γ̃′ (z̃iz̃
′
i − z̃i′ z̃

′
i′) γ̃]m− 2m

(
α′qg + κ′z̃g + β

)
[(xi − xi′)− γ̃′(z̃i − z̃i′)]

− 2mγ̃′(z̃ixi − z̃i′xi′) + δ(xi − xi′) + (C̃−δγ̃′)(z̃i − z̃i′) + ui − ui′

= (x2
i − x2

i′)m + [γ̃′ (z̃iz̃
′
i − z̃i′ z̃

′
i′) γ̃]m− 2m (α′q̂g,−ii′ + κ′z̃g + β) [(xi − xi′)− γ̃′(z̃i − z̃i′)]

− 2mγ̃′(z̃ixi − z̃i′xi′) + δ(xi − xi′) + (C̃−δγ̃′)(z̃i − z̃i′) + Uii′ ,

where the composite error is

Uii′ = ui − ui′ + 2mα′εqg,−ii′ [(xi − xi′)− γ̃′(z̃i − z̃i′)].

Make the following assumptions.
Assumption B1: Each individual i in group g satisfies equation (41). Unobserved errors

ui’s are independent across groups and have zero mean conditional on all (xl, zl) for l ∈ g,
and vg are unobserved group level fixed effects. The number of observed groups G → ∞.
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For each observed group g, a sample of ng observations of qi, xi, zi is observed. Each sample
size ng is fixed and does not go to infinity. The true number of individuals comprising each
group is unknown.

Assumption B2: The coefficients A,R,C = (C̃,D),b,d are unknown constants satis-
fying b′1 = 1, d′1 = 0, d 6= 0. There exist values of qg that satisfy

qg = x2
gm +

(
γ̃′zz′gγ̃

)
m + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xg − γ̃′zg)

− 2mγ̃′xzg +
(
xg − β − α′qg − γ̃′zg − κ′z̃g

)
δ + r + Aqg + C̃zg + Dz̃g + vg. (45)

Assumption B1 just defines the model. Assumption B2 ensures that an equilibrium exists
for each group, thereby avoiding Tamer’s (2003) potential incoherence problem. To see this,
observe that if A 6= 0 then qg has the solution

qg =
1

2m (Ap)2{(2mAp(xg − γ̃
′zg − κ′z̃g − β) + 1− A+ pAδ)± [(2mAp(xg − γ̃′zg − κ′z̃g − β)

+ 1− A+ pAδ)2 − 4m (Ap)2
(
mx2

g +mγ′zz′gγ +m(κ′z̃g + β)2 − 2m(κ′z̃g + β)(xg − γ̃′zg)

−2mγ̃′xzg + (xg − β − γ̃′zg − κ′z̃g) δ + r + C̃zg +Dz̃g + vg)
)

]1/2}, (46)

while if A does equal zero, then the model will be trivially identified because in that case
there aren’t any peer effects. From equation (46), we can see qg is an implicit function of
x2
g, xg, zg, z̃g, zz′g, xzg, and vg. In the case of multiple equilibria, we do not take a stand on

which root of equation (45) is chosen by consumers, we just make the following assumption.

Assumption B3: Individuals within each group agree on an equilibrium selection rule.

Assumption B4: Within each group g, the vector (xi, z̃i) is a random sample drawn from

a distribution that has mean (xg, zg) = E ((xi, z̃i) | i ∈ g) and variance Σxzg =

(
σ2
xg σxzg

σ′xzg Σzg

)
where σ2

xg = V ar(xi | i ∈ g), σxzg = Cov(xi, z̃i | i ∈ g) and Σzg = V ar(z̃i | i ∈ g). Denote

εix = xi − xg and εiz = z̃i − zg. Assume E
(

(εix, εiz)|zg, z̃g, xzg, zz′g, xg, x2
g,vg, rg

)
= 0 and

is independent across individual i’s.

To satisfy Assumption B4, we can think of group level variables like xg, zg and vg as
first being drawn from some distribution, and then separately drawing the individual level
variables (εix, εiz) from some distribution that is unrelated to the group level distribution, to
then determine the individual level observables xi = xg+εix and z̃i = zg+εiz. It then follows
from Assumption B4 that E(εxg,−ii′ | xi, zi, xi′ , zi′ , rg) = 0 and E(εzg,−ii′ | xi, zi, xi′ , zi′ , rg) =
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0. With similar arguments in the generic model, Assumption B4 suffices to ensure that

E(εqg,−ii′ [(xi − xi′), (z̃i − z̃i′)
′]|xi, xi′ , zi, zi′ , rg) = E(εqg,−ii′|rg) · [(xi − xi′), (zi − zi′)

′] = 0.

Then we have the moment condition

E{[qi − qi′ + 2m (α′q̂g,−ii′ + κ′z̃g) [(xi − xi′)− γ̃′(z̃i − z̃i′)]− (x2
i − x2

i′)m−γ̃′ (z̃iz̃′i − z̃i′ z̃
′
i′) γ̃m

(47)

+2mγ̃′(z̃ixi − z̃i′xi′)− η(xi − xi′) + (ηγ̃′−C̃)(z̃i − z̃i′)]|xi, xi′ , zi, zi′ , rg} = 0

for the Engel curves, where η = δ−2mβ, and so

E

[(
qi − qi′ + 2e−b

′ lnpt
d

pt
(p′tAq̂gt,−ii′ + p′tDz̃g) [(xi − xi′)− p′tC̃(z̃i − z̃i′)]− e−b

′ lnpt
d

pt

[(x2
i − x2

i′) + p′tC̃ (z̃iz̃
′
i − z̃i′ z̃

′
i′) C̃′pt − 2p′tC̃(zixi − zi′xi′)]−

(
b

pt
− 2e−b

′ lnpt
d

pt
p

1/2′
t Rp

1/2
t

)
·(xi − xi′) + [(

b

pt
− 2e−b

′ lnpt
d

pt
p

1/2′
t Rp

1/2
t )C̃′pt − C̃](z̃i − z̃i′)|xi, xi′ , zi, zi′ , rg

]
= 0. (48)

for the full demand system.
We define the instrument vector rgii′ to be linear and quadratic functions of rg, (xi, z

′
i)
′,

and (xi′ , z
′
i′)
′. Denote

L1jgii′ = (qji − qji′), L2jgii′ = q̂jg,−ii′(xi − xi′), L3jkgii′ = q̂jgt,−ii′(z̃ki − z̃ki′),

L4k2gii′ = z̃k2g(xi − xi′), L5kk2gii′ = z̃k2g(z̃ki − z̃ki′), L6gii′ = x2
i − x2

i′ , (49)

L7kk′gii′ = z̃kiz̃k′i − z̃ki′ z̃k′i′ , L8kgii′ = z̃kixi − z̃ki′xi′ , L9gii′ = xi − xi′ , L10kgii′ = z̃ki − z̃ki′ ,

For ` ∈ {1j, 2j, 3jk, 4k2, 5kk2, 6, 7kk
′, 8k, 9, 10k | j = 1, ..., J ; k, k′ = 1, ..., K, k2 = 1, ..., K2},

define vectors

Q`g =

∑
(i,i′)∈Γg

L`gii′rgii′∑
(i,i′)∈Γg

1
.

Then for each good j, the identification is based on

E

(
Q1jg + 2mj

J∑
j′=1

αj′Q2j′g − 2mj

J∑
j′=1

K∑
k=1

αj′ γ̃kQ3j′kg + 2mj

K2∑
k2=1

κk2Q4k2g − 2mj

K∑
k=1

K2∑
k2=1

γ̃kκk2Q5kk2g

−mjQ6g −mj

K∑
k=1

K∑
k′=1

γ̃kγ̃k′Q7gkk′ + 2mj

K∑
k=1

γ̃kQ8kg − ηjQ9g +
K∑
k=1

(ηj γ̃k − c̃jk)Q10kg

)
= 0,

where γ̃k is the kth element of γ̃ = C̃′p, κk2 is the k2th element of κ = D′p, and c̃jk is the
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(j, k)th element of C̃.
Assumption B5: E

(
Q′g
)
E (Qg) is nonsingular, where

Qg = (Q21g, ...,Q2Jg,Q311g, ...,Q3JKg,Q41g, ...,Q4K2g,Q511g, ...,Q5KK2g,

Q6g,Q711g, ...,Q7KKg,Q81g, ...,Q8Kg,Q9g,Q101g, ...,Q10Kg).

Under Assumption B5, we can identify

(−2mjα
′
, 2mjα1γ̃

′, ..., 2mjαJ γ̃
′,−2mjκ

′, 2mjκ1γ̃
′, ..., 2mjκK2 γ̃

′,mj,mj γ̃1γ̃
′, ...,mj γ̃K γ̃

′,

−2mj γ̃
′, ηj, c

′
j − ηj γ̃′)′ =

[
E
(
Q′g
)
E (Qg)

]−1
E
(
Q′g
)
E (Q1jg)

for each j = 1, ..., J − 1. From this, α, κ, γ̃, C̃, m, and η = δ−2mβ are identified. To
identify the full demand system, let pt denote the vector of prices in a single price regime t.
Let

P =


p′1
...

p′T

 , and Λ =


Λ1

Λ2

...
ΛT


with the (J − 1)× [J − 1 + J(J + 1)/2] matrix

Λt =


1
p1t

0 · · · 0 −2m1tp
′
t −4m1tp

1/2
1t p

1/2
2t · · · −4m1tp

1/2
J−1,tp

1/2
Jt

0 1
p2t
· · · 0 −2m2tp

′
t −4m2tp

1/2
1t p

1/2
2t · · · −4m2tp

1/2
J−1,tp

1/2
Jt

. . . ...
...

...
...

0 · · · 0 1
pJ−1,t

−2mJ−1,tp
′
t −4mJ−1,tp

1/2
1t p

1/2
2t · · · −4mJ−1,tp

1/2
J−1,tp

1/2
Jt

 .

Then we have

PA =


α′1
...
α′T

 , PD =


κ′1
...
κ′T

 , and Λ (b1, ...bJ−1, r11, ..., rJJ , r12, ..., rJ−1,J)′ =


η1

...
ηT

 ,

where ηt = (η1t, ..., ηJ−1,t)
′. Hence, we need the T × J matrix P has full column rank to

further identify parameters in A and D; need the (J − 1)T × [J − 1 + J(J + 1)/2] matrix Λ

has full column rank to identify b and R. Once b is identified, we can identify d. Using the
groups that are observed facing this set of prices, from above we can identity all parameters
in A, C̃, D, b, d, and R.

Assumption B6: Data are observed in T price regimes p1, ..., pT such that the T × J
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matrix P = (p1, ...,pT )′ and the (J − 1)T × [J − 1 + J(J + 1)/2] matrix Λ both have full
column rank.

Given Assumption B6, A and D are identified by

A = (P′P)−1P′


α′1
...
α′T

 and D = (P′P)−1P′


κ′1
...
κ′T

 ;

R and b are identified by

(b1, ...bJ−1, r11, ..., rJJ , r12, ..., rJ−1,J)′ = (Λ′Λ)−1Λ′


η1

...
ηT

 ;

d is identified by dj = pjtmjte
b′ lnpt for j = 1, ..., J and dJ = −

∑J−1
j=1 dj.

To illustrate, in the two goods system, i.e., J = 2, this means that we can identify A and
D if the T × 2 matrix

P =


p11, p21

...
p1T , p2T


has rank 2 and the T × 4 matrix

Λ =


1
p11
, −2e−b

′ lnp1 d1
p11
p11, −2e−b

′ lnp1 d1
p11
p21, −4e−b

′ lnp1 d1
p11
p

1/2
11 p

1/2
21

...
...

...
...

1
p1T
, −2e−b

′ lnpT d1
p1T
p1T , −2e−b

′ lnpT d1
p1T
p2T , −4e−b

′ lnpT d1
p1T
p

1/2
1T p

1/2
2T


has rank 4.

The above derivation proves the following theorem:

Theorem 2. Given Assumptions B1-B5, the parameters C̃, α, γ̃, κ, m, and η = δ−2mβ

in the Engel curve system (41) are identified. If Assumption B6 also holds, all the parameters
A, b, R, d, C̃ and D in the full demand system (17) are identified.

9.6 Estimation of the Demand System with Fixed Effects

For the full demand system, the GMM estimation builds on the above, treating each value
of gt as a different group, so the total number of relevant groups is N =

∑G
g=1

∑T
t=1 1 where
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the sum is over all values gt can take on. Define

Γgt = {(i, i′) | i and i′ are observed, i ∈ gt, i′ ∈ gt, i 6= i′}

So Γngt is the set of all observed pairs of individuals i and i′ in the group g at period t. Let
the instrument vector rgtii′ be linear and quadratic functions of rgt, (xi, z

′
i)
′, and (xi′ , z

′
i′)
′.

The GMM estimator, using group level clustered standard errors, is then(
Â′1, ..., Â

′
J , b̂1, ...,̂bJ−1, d̂1, ...,d̂J−1,̂̃c′1, ...̂̃c′J , , D̂′1, ...D̂′J , r11, ...rJJ , r12, ..., rJ−1J

)′
= arg min

(∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

mgtii′∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

1

)′
Ω̂

(∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

mgtii′∑T
t=1

∑G
g=1

∑
(i,i′)∈Γgt

1

)
,

where the expression of mgtii′ = (m′1gtii′ , ...,m
′
J−1,gtii′) is

mjgtit′ = [(qji − qji′)−
(

(xi − γ̃′tz̃i)
2 − (xi′ − γ̃′tz̃i′)

2
)
mjt − c̃′j(z̃i − z̃i′)

− (δjt − 2mjt(α
′
tq̂g,−ii′ + βt + κ′tz̃gt)) ((xi − γ̃′tz̃i)− (xi′ − γ̃′tz̃i′))]rgtii′

with

mjt = e−b
′ lnpt

dj
pjt
, αt = A′pt, γ̃t = C̃′pt, κt = D′pt, βt = p

1/2′
t Rp

1/2
t , δjt =

bj
pjt
.

9.7 Construction of Instruments For Fixed Effects Demand System

Estimation

For estimation, we need to establish that the set of instruments rgt provided earlier are valid.
For any matrix of random variables w, we have ŵgt· defined by

ŵgt· =

∑
s6=t
∑

i∈gs wi∑
s6=t
∑

i∈gs 1

From Assumption B4, we can write ŵgt· = wgt· + εwgt·, where εwgt· is a summation of
measurement errors from other periods. Assume now that εwgt ⊥ (εwgt·,wgt·).

As discussed after assumption B4, we can think of (xi, zi) as being determined by having
(εix, εiz) drawn independently from group level variables. As long as these draws are inde-
pendent across individuals, and different individuals are observed in each time period, then
we will have εwgt ⊥ (εwgt·,wgt·) for w being suitable functions of (xi, zi). Alternatively, if we
interpret the ε’s as being measurement errors in group level variables, then the assumption is
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that these measurement errors are independent over time. In contrast to the ε’s, we assume
that true group level variables like xgt and zgt are correlated over time, e.g., the true mean
group income in one time period is not independent of the true mean group income in other
time periods.

Given εwgt ⊥ (εwgt·,wgt·), we have

0 = E(εqgt,−ii′ [(xi − xi′)− γ′gt(z̃i − z̃i′)] | ŵgt·, xit, xi′t, zit, zi′t),

because

E
(
qgt[(xi − xi′)− γ′gt(z̃i − z̃i′)](x̂∗gt,−ii′ − x∗gt) | x∗gt,x∗x∗′gt,vgt,wgt·, εwgt·,x

∗
it,x

∗
i′t

)
= 0,

and

E
(
[(x∗i − x∗i′)](x̂

∗
gT,−ii′ − x∗gt)

′ | wgt·, εwgt·,x
∗
it,x

∗
i′t

)
= 0;

E
(

[(x∗i − x∗i′)](x̂
∗x∗′gt,−ii′ − x∗x∗′gt)

′ | wgt·, εwgt·,x
∗
it,x

∗
i′t

)
= 0,

where x∗ = (x, z′)′. It follows that
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·

)
is a valid instrument for q̂gt,−ii′ .

The full set of proposed instruments is therefore rgii′ = rg ⊗ (x∗i − x∗i′ ,x
∗
ix
∗′
i − x∗i′x

∗′
i′ ),

where
rg =

(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·,x

∗
i + x∗i′ , x

2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
,

for the Engel curve system, and rgtii′ = rgt ⊗ (x∗i − x∗i′ ,x
∗
ix
∗′
i − x∗i′x

∗′
i′ ), where

rgt = p′t ⊗
(
x̂∗x∗′gt·, x̂∗gt·x̂∗

′
gt·, x̂

∗
gt·,x

∗
i + x∗i′ , x

2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
.

for the full demand system.

9.8 Identification and Estimation of the Demand System with Ran-

dom Effects

The Engel curve model with random effects is

qi = x2
im + (γ̃′z̃iz̃

′
iγ̃) m− 2mγ̃′z̃ixi + m

(
α′qg + κ′z̃g + β

)2 − 2m
(
α′qg + κ′z̃g + β

)
(xi − γ̃′z̃i)

+
(
xi − β − α′qg − γ̃′z̃i − κ′z̃g

)
δ + r + Aqg + C̃z̃i + Dz̃g + vg + ui,
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Therefore,

εqi′ = qi′ − qg = εx2i′m + γ′εzzi′γm− 2mγ′εzxi′−2m
(
α′qg + κ′z̃g + β

)
(εxi′ − γ̃′εzi′)

+ δεxi′ + (C− δγ̃′)εzi′ + vg − µ+ ui′ ;

εqg,−ii′ = q̂g,−ii′ − qg = εx2g,−ii′m + γ′εzzg,−ii′γm− 2mγ′εzxg,−ii′−2m
(
α′qg + κ′z̃g + β

)
· (εxg,−ii′ − γ′εzg,−ii′) + δεxg,−ii′ + (C− δγ̃′)εzg,−ii′ + vg − µ+ ûg,−ii′ .

By rewriting qji as

qji = mj(xi − γ̃′z̃i)2 +mj

(
α′qg

)2
+mj (κ′z̃g + β)

2 − [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α
′ −A′j]qg

−2mj (κ′z̃g + β) (xi − γ̃′z̃i) + δj(xi − β − γ̃′z̃i − κ′z̃g) + rj + c′j z̃i + D′j z̃g + vjg + uji

= mj(xi − γ̃′z̃i)2 +mjα
′q̂g,−ii′α

′qi′ +mj (κ′z̃g + β)
2 − [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α

′ −A′j]

·q̂g,−ii′ − 2mj (κ′z̃g + β) (xi − γ̃′z̃i) + δj(xi − β − γ̃′z̃i − κ′z̃g) + rj + c′j z̃i + D′j z̃g + vjg + uji + ε̃jgii′ ,

where

ε̃jgii′ = mjα
′(qgq

′
g − q̂g,−ii′q

′
i′)α− [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α

′ −A′j](qg − q̂g,−ii′)

= −mjα
′[(εqg,−ii′ + εqi′)q

′
g + εqg,−ii′ε

′
qi′ ]α− [A′j − (2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α

′]εqg,−ii′ .

and letting Ujii′ = vjg + uji + ε̃jgii′ , we have the conditional expectation

E(Ujii′ |zi, xi, rg) = E(vjg|zi, xi, rg)−mjα
′E(εqg,−ii′ε

′
qi′|zi, xi, rg)α = µj −mjα

′Σvα,

where µj = E(vjg|zi, xi, rg) = E(vjg) and Σv = V ar(vg|zi, xi, rg) = V ar(vg). From this, we
can construct the conditional moment condition

E
[
qji −mjα

′q̂g,−ii′α
′qi′ −mj(xi − γ̃′z̃i)2 −mj(κ

′z̃g + β)2 + [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α
′

−A′j]q̂g,−ii′ + 2mj(κ
′z̃g + β)(xi − γ̃′z̃i)− δj(xi − β − γ̃′z̃i − κ′z̃g)− rj − c̃′j z̃i −D′j z̃g|xi, zi, rg

]
= vj0,

where vj0 = µj −mjα
′Σvα is a constant.

Let the instrument vector rgi be any functional form of rg and (xi, z
′
i)
′. Then for any

i, i′ ∈ g with i 6= i′, the following unconditional moment condition holds

E
[(
qji −mjα

′q̂g,−ii′α
′qi′ −mj(xi − γ̃′z̃i)2 −mj(κ

′z̃g + β)2 + [(2mj (xi − γ̃′z̃i − κ′z̃g − β) + δj)α
′

−A′j]q̂g,−ii′ + 2mj(κ
′z̃g + β)(xi − γ̃′z̃i)− δj(xi − β − γ̃′z̃i − κ′z̃g)− rj − c̃′j z̃i −D′j z̃g − vj0

)
rgi
]

= 0 .

We can sum over all i′ 6= i in the group g. Using the property of 1
ng−1

∑
i′∈g,i′ 6=i q̂jg,−ii′ = q̂jg,−i,
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then for any i ∈ g,

E{rgi[qji−mjα
′ 1

ng − 1

∑
i′∈g,i′ 6=i

q̂g,−ii′q
′
i′α−mjx

2
i −mj γ̃

′z̃iz̃
′
iγ̃ −mjκ

′z̃gz̃
′
gκ+ 2mj γ̃

′z̃ixi + 2mjκ
′z̃gxi

+ 2mjxiα
′q̂g,−i − 2mj γ̃

′z̃iq̂
′
g,−iα− 2mjκ

′z̃gq̂
′
g,−iα− 2mj γ̃

′z̃iz̃
′
gκ+ q̂′g,−i[(δj − 2mjβ)α−Aj]

+(2mjβ − δj)xi + z̃′i[(δj − 2mjβ)γ̃−cj] + z̃′g[(δj − 2mjβ)κ−Dj]−mjβ
2 + δjβ − rj − vj0} = 0 .

Denote

L1jgi = qji, L2jj′gi =
1

ng − 1

∑
i′∈g,i′ 6=i

q̂jg,−ii′qj′i′ , L3gi = x2
i , L4kk′gi = z̃kiz̃k′i, L5k2k′2gi

= z̃k2gz̃k′2g,

L6kgi = z̃kixi, L7k2gi = z̃k2gxi, L8jgi = q̂jg,−ixi, L9jkgi = q̂jg,−iz̃ki, L10jk2gi = q̂jg,−iz̃k2g,

L11kk2gi = z̃kiz̃k2g, L12jgi = q̂jg,−i, L13gi = xi, L14kgi = z̃ki, L15k2gi = z̃k2g, L16gi = 1.

For ` ∈ {1j, 2jj′, 3, 4kk′, 5k2k
′
2, 6k, 7k2, 8j, 9jk, 10jk2, 11kk2, 12j, 13, 14k, 15k2, 16 | j, j′ =

1, ..., J ; k, k′ = 1, ..., K; k2, k
′
2 = 1, ..., K2}, define group level vectors

H`g =
1

ng − 1

∑
i∈g

L`girgi.

Then for each good j, the identification is based on

E

(
H1jg −mj

J∑
j=1

J∑
j′=1

αj′αjH2jj′g −mjH3g −mj

K∑
k=1

K∑
k′=1

γ̃kγ̃k′H4kk′g −mj

K2∑
k2=1

K2∑
k′2=1

κk2κk′2H5k2k′2g

+ 2mj

K∑
k=1

γ̃kH6kg + 2mj

K2∑
k2=1

κk2H7k2g + 2mj

J∑
j′=1

αj′H8j′g − 2mj

J∑
j′=1

K∑
k=1

aj′ γ̃kH9j′kg

− 2mj

J∑
j′=1

K2∑
k2=1

aj′κk2H10j′k2g − 2mj

K∑
k=1

K2∑
k2=1

γ̃kκk2H11kk2g +
J∑

j′=1

[(δj − 2mjβ)αj′ − Ajj′ ]H12j′g

+(2mjβ − δj)H13g +
K∑
k=1

[(δj − 2mjβ)γ̃k − cjk]H14kg +
K2∑
k2=1

[(δj − 2mjβ)κk2 −Djk2 ]H15k2g − ξjH16g

)
= 0,

where ξj = mjβ
2 − δjβ + rj + vj0.

Assumption C: E
(
H′g
)
E (Hg) is nonsingular, where

Hg = (H211g, ...,H2JJg,H3g,H411g, ...,H4KKg,H511g, ...,H5K2K2g,H61g, ...,H6Kg,

H71g, ...,H7K2g,H81g, ...,H8Jg,H911g, ...,H9JKg,H1011g, ...,H10JK2g,H1111g, ...,H11KK2g,

H121g, ...,H12Jg,H13g,H141g, ...,H14Kg,H151g, ...,H15K2g,H16g).
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Under Assumptions B1-B4 and Assumption C, we can identify

(mjα1α
′, ...,mjαJα

′,mj,mj γ̃1γ̃
′, ...,mj γ̃K γ̃

′,mjκ1κ
′, ...,mjκK2κ

′,−2mj γ̃
′,−2mjκ

′,−2mjα
′,

2mj γ̃1α
′, ..., 2mj γ̃Kα

′, 2mjκ1α
′, ..., 2mjκK2α

′, 2mjκ1γ̃
′, ..., 2mjκK2 γ̃

′,A′j − (δj − 2mjβ)α′, δj − 2mjβ,

cj−(δj − 2mjβ)γ̃,Dj−(δj − 2mjβ)κ,mjβ
2 − δjβ + rj + vj0)′ =

[
E
(
H′g
)
E (Hg)

]−1
E
(
H′g
)
E (H1jg) .

for each j = 1, ..., J − 1. From this, γ̃, κ, α, m, η = δ−2mβ, Aj, c̃j, Dj, and mjβ
2 −

δjβ + rj + vj0 for j = 1, ..., J − 1 are all identified. Then, AJ =
(
α−
∑J−1

j=1 Ajpj

)
/pJ ,

c̃J = (γ̃ −
∑J−1

j=1 c̃jpj)/pJ , and DJ = (κ−
∑J−1

j=1 Djpj)/pJ are identified. Here without price
variation, we can identify A and D. This is different from the fixed effects model because
the key term for identifying A is Aqg, which is differenced out in fixed effects model, and
only C̃ can be identified from the cross product of qg and (xi, z̃i). Furthermore, to identify
the structural parameters b, d, and R, we need the rank condition in Assumption B6(2).

With our data spanning multiple time regimes t, we estimate the full demand system
model simultaneously over all values of t, instead of as Engel curves separately in each t

as above. To do so, in the above moments we replace the Engel curve coefficients α, β, γ̃,
κ, δ, rj, and m with their corresponding full demand system expressions, i.e., α = A′p,
β = p1/2′Rp1/2, etc, and add t subscripts wherever relevant. The resulting GMM estimator
based on these moments (and estimated using group level clustered standard errors), is then

(Â′1, ..., Â
′
J , b̂1, ...,̂bJ−1, d̂1, ...,d̂J−1,̂̃c′1, ...̂̃c′J , , D̂′1, ...D̂′J , R̂11, ...R̂JJ , R̂12, ..., R̂J−1J ,

µ̂, Σ̂v,11, ..., Σ̂v,JJ , Σ̂v,12, ..., Σ̂v,J−1,J , )
′

= arg min

(∑T
t=1

∑G
g=1

∑
i∈Γgt

mgti∑T
t=1

∑G
g=1

∑
i∈Γgt

1

)′
Ω̂

(∑T
t=1

∑G
g=1

∑
i∈Γgt

mgti∑T
t=1

∑G
g=1

∑
i∈Γgt

1

)
,

where the expression of mgti = (m′1gti, ...,m
′
J−1,gti) is

mjgti = {qji −mjtα
′
tq̂gt,−ii′α

′
tqi′ −mjt(xi − γ̃′tz̃i)2 −mjt(κ

′
tz̃gt + βt)

2

+ [(2mjt (xi − γ̃′tz̃i − κ′tz̃gt − βt) + δjt)α
′
t −A′j]q̂gt,−ii′ + 2mjt(κ

′
tz̃g + βt)(xi − γ̃′tz̃i)

− δjt(xi − βt − γ̃′tz̃i − κ′tz̃gt)− rjt − c̃′j z̃i −D′j z̃g − vjt0}rgti
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with

mjt = e−b
′ lnpt

dj
pjt
, αt = A′pt, γ̃t = C̃′pt, κt = D′pt, βt = p

1/2′
t Rp

1/2
t ,

ηjt =
bj
pjt
−2mjtp

1/2′
t Rp

1/2
t , δjt =

bj
pjt
, rjt = Rjj + 2

∑
k>j

Rjk

√
pkt/pjt,

vjt0 = µjt − e−b
′ lnpt

dj
pjt

J∑
j1=1

J∑
j2=1

J∑
j=1

J∑
j′=1

Aj1jpj1tAj2j′pj2tΣvt,jj′ .

Note that vjt0 are constants for each value of j and t, that must be estimated along with
the other parameters. In our data T is large (since prices vary both by time and district).
To reduce the number of required parameters and thereby increase efficiency, assume that
µ = E(vgt) and Σv = V ar(vgt) do not vary by t. Then we can replace vjt0 with

vjt0 = µj − e−b
′ lnpt

dj
pjt

J∑
j1=1

J∑
j2=1

J∑
j=1

J∑
j′=1

Aj1jpj1tAj2j′pj2tΣv,jj′

Moreover, since vgt represents deviations from the utility derive demand functions, it may
be reasonable to assume that µ = 0. With these substitutions we only need to estimate the
parameters Σv instead of all the separate vjt0 constants.
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I. Main Tables

Table 1: Summary statistics for NSS consumption data

Observations Pairs
(N=56,516) (N=2,055,776)

Mean SD Min Max Mean SD Min Max
xi 1.12 0.66 0.10 8.75 1.08 0.64 0.10 8.75
qi luxuries 0.31 0.37 0.00 7.96 0.30 0.36 0.00 7.96
qi necessities 0.83 0.40 0.03 4.32 0.79 0.38 0.03 4.32
q̂g,−ii′ luxuries 0.26 0.15 0.02 1.78
q̂g,−ii′ neccessities 0.74 0.17 0.26 1.83
p luxuries 0.98 0.08 0.81 1.29 0.99 0.08 0.81 1.29
p neccessities 0.99 0.07 0.86 1.34 1.00 0.07 0.86 1.34
Educ med 0.48 0.50 0.00 1.00 0.50 0.50 0.00 1.00
Educ high 0.06 0.24 0.00 1.00 0.03 0.17 0.00 1.00
(hhsize-1)/10 0.40 0.22 0.00 1.10 0.39 0.22 0.00 1.10
headage/120 0.40 0.11 0.17 0.94 0.40 0.11 0.17 0.94
married 0.87 0.34 0.00 1.00 0.87 0.34 0.00 1.00
ln(land+1) 0.60 0.58 0.00 2.30 0.53 0.55 0.00 2.30
ration card 0.23 0.42 0.00 1.00 0.26 0.44 0.00 1.00
qi vis luxuries 0.13 0.23 0.00 7.54 0.13 0.23 0.00 7.54
qi invis luxuries 0.18 0.22 0.00 5.07 0.17 0.21 0.00 5.07
qi vis necessities 0.13 0.09 0.00 2.37 0.12 0.08 0.00 2.37
qi invis necessities 0.70 0.34 0.01 3.98 0.67 0.32 0.01 3.98
q̂g,−ii′ vis luxuries 0.11 0.08 0.00 1.12
q̂g,−ii′ inv luxuries 0.16 0.08 0.01 1.35
q̂g,−ii′ vis necessities 0.11 0.04 0.02 0.49
q̂g,−ii′ inv necessities 0.63 0.14 0.22 1.53
p vis luxuries 0.95 0.11 0.64 1.33 0.95 0.11 0.64 1.33
p invis luxuries 0.98 0.08 0.82 1.28 1.00 0.08 0.82 1.28
p vis necessities 0.98 0.14 0.70 1.50 1.01 0.15 0.70 1.50
p invis necessities 0.99 0.06 0.86 1.34 1.00 0.06 0.86 1.34

Summary statistics for estimation sample. Includes all 2354 group-rounds
with 10 or more obs of Hindu non-SC/ST households. Groups defined as
the cross of education (less than primary, primary, secondary or more) and
district.
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Table 2: Luxury spending as a function of group spending, generic model estimates

RE Peer group FE

(1) (2) (3) (4) (5) (6) (7) (8)
a (peer mean expenditure) 0.002 -0.068 -0.107 -0.112 -0.053 -0.324∗∗∗ -0.657∗∗∗ -0.586∗∗∗

(0.038) (0.117) (0.114) (0.107) (0.047) (0.124) (0.157) (0.132)
b (own expenditure) 0.187∗∗∗ 0.439∗∗∗ 0.436∗∗∗ 0.428∗∗∗ 0.205∗∗∗ 0.445∗∗∗ 0.446∗∗∗ 0.379∗∗∗

(0.013) (0.011) (0.011) (0.011) (0.013) (0.011) (0.011) (0.025)
d (curvature) 2.263∗∗∗ 0.289∗∗∗ 0.295∗∗∗ 0.308∗∗∗ 1.847∗∗∗ 0.289∗∗∗ 0.302∗∗∗ 0.413∗∗∗

(0.420) (0.032) (0.034) (0.036) (0.314) (0.029) (0.030) (0.071)
-a/b -0.010 0.156 0.245 0.261 0.258 0.727 1.474 1.546

(0.203) (0.266) (0.259) (0.247) (0.225) (0.267) (0.328) (0.342)
P(a = -b) 0.000 0.001 0.003 0.002 0.001 0.299 0.157 0.110
Hausman for a 4.400 3.644 12.470 13.885
P-value 0.036 0.056 0.000 0.000
Individual controls No Yes Yes Yes No Yes Yes Yes
Group controls No No Yes Yes No No Yes Yes
Price controls No No No Yes No No No Yes
Number of groups 2,354 2,354 2,354 2,354 2,354 2,354 2,354 2,354
Number of pairs 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776 2,055,776

Model estimated is yi = d(ŷga+ xib+Xβ)2 + (ŷga+ xic+Xβ). Dependent variable is household luxury spending. Individual
controls include household size, age, marital status and amount of land owned. Group controls include religion indicators and
education indicators. Price controls are laspeyres indices for luxury and nonluxury spending. Standard errors in parentheses
and clustered at the group level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3: Satisfaction on household and peer income

OLS (SDs) Ordered logit

(1) (2) (3) (4) (5) (6)

Imputed expenditure 0.068∗∗∗ 0.179∗∗∗

(0.013) (0.031)

Group expenditure -0.100∗∗ -0.203∗

(0.049) (0.115)

Imputed expenditure, CPI deflated 0.131∗∗∗ 0.141∗ 0.335∗∗∗ 0.359∗

(0.025) (0.079) (0.058) (0.198)

Group expenditure, deflated -0.190∗ -0.182 -0.424∗ -0.407
(0.107) (0.114) (0.256) (0.285)

Own X group expenditure -0.003 -0.006
(0.018) (0.044)

Year FEs Yes Yes Yes Yes Yes Yes

Ratio 1.47 1.45 1.29 1.13 1.27 1.13
(0.764) (0.850) (1.249) (0.684) (0.803) (1.202)

P(Own + group = 0) 0.528 0.588 0.799 0.848 0.734 0.908
Dependent mean 0.00 0.00 0.00 3.07 3.07 3.07
Dependent SD 1.00 1.00 1.00 1.22 1.22 1.22
Observations 3236 3236 3236 3236 3236 3236

Dependent variable as noted in column header, in SD. Subjective well being data from World Values
Survey, imputations from NSS. Peer groups defined as intersection of education (below primary, primary
or partial secondary, secondary+) and religion (Hindu and non-Hindu). All columns include controls
for household size, age, sex, marital status and education. Standard errors in parentheses and clustered
at the group level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Structural demand model, fixed effects estimates

A Same A Diagonal

A (own luxuries) 0.50 -2.63
(0.11) (0.40)

A (own necessities) 0.50 2.99
(0.11) (0.28)

χ2 A same 80
P-val [0.00]
Hausman test -0.31 -7.8
P-val [0.76] [0.00]

8.8
[0.00]

Selected estimates for structural demand model.
Table displays effect of group consumption on
needs.
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Table 5: Structural demand model, random effects effects estimates

A Same A Diagonal A Full

A (own luxuries) 0.55 0.46 0.20
(0.02) (0.02) (0.09)

A (own necessities) 0.55 0.57 1.09
(0.02) (0.02) (0.10)

A (cross luxuries) 0.42
(0.08)

A (cross necessities) -0.33
(0.11)

χ2 A same 43
P-val [0.00]

Selected estimates for structural demand model. Table dis-
plays effect of group consumption on needs.
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Table 6: Structural demand model, four consumption categories

Fixed effects Random effects

A same A same A diagonal

A (visible luxuries) 0.71 0.65 0.54
(0.05) (0.01) (0.01)

A (invisible luxuries) 0.71 0.65 0.62
(0.05) (0.01) (0.01)

A (visible necessities) 0.71 0.65 0.761
(0.05) (0.01) (0.01)

A (invisible necessities) 0.71 0.65 0.66
(0.05) (0.01) (0.01)

Hausman test RE 1.26
[0.21]

χ2 A same 658
[0.00]

Selected estimates for structural demand model. Table displays effect of
group consumption on needs.
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Table 7: Structural demand model, fixed effects estimates

Religion Education

A (Hindu, non-SC/ST) 0.50
(0.11)

A (SC/ST) 0.13
(0.18)

A (non-Hindu) -0.06
(0.23)

A (less than primary) 0.08
(0.15)

A (primary) 0.56
(0.12)

A (secondary) 0.37
(0.22)

Selected estimates for structural demand model.
Religion models are estimated separately by demo-
graphic subgroup. Table displays effect of group
consumption on needs.
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Table 8: Structural demand model, by above/below median expenditure

Fixed effects Random effects

A same A same A diagonal

Panel A: Below median expenditure
A (luxuries) 0.26 0.32 0.42

(0.05) (0.01) (0.01)
A (necessities) 0.26 0.32 0.37

(0.05) (0.01) (0.02)
Panel B: Above median expenditure

A (luxuries) 0.59 0.78 0.65
(0.17) (0.03) (0.04)

A (necessities) 0.59 0.78 0.86
(0.17) (0.03) (0.04)

Selected estimates for structural demand model.
Religion models are estimated separately by demo-
graphic subgroup. Table displays effect of group
consumption on needs.
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II. Appendix

Table A1: Subjective well-being summary statistics

Mean SD Min Max

Life satisfaction 3.07 1.22 1.00 5.00
Imputed expenditure, CPI deflated 2.20 1.44 0.70 9.51
Group expenditure, CPI deflated 3.86 1.30 1.70 10.60
Household size 4.06 1.85 1.00 10.00
Age 40.81 14.53 18.00 93.00
Married (=1) 0.84 0.37 0.00 1.00
Non-Hindu (=1) 0.24 0.42 0.00 1.00
Primary education (=1) 0.10 0.29 0.00 1.00
Secondary education (=1) 0.14 0.35 0.00 1.00

Observations 3236

Life satisfaction variable from World Values Survey. Participants asked
”All things considered, how satisfied are you with your life as a whole
these days?”, and asked to point to a position on a ladder. Coded as 1-5
in 2006, and 1-10 in 2014. We collapsed to a 1-5 scale in 2014. Income
measured in thousands of Rs/month. Excluded categories are less than
primary education, and Hindu religion.
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Table A2: Structural demand model, full estimates for fixed effects model

Same A Diagonal A
est std err est std err

A luxuries 0.502 0.110 -2.628 0.395
necessities 0.502 0.110 2.992 0.276

R luxuries 8.228 4.228 6.936 2.387
necessities -1.899 2.462 -17.609 3.418

C luxuries (hhsize-1)/10 0.607 0.049 0.317 0.030
headage/120 0.013 0.085 0.054 0.044
married 0.070 0.030 0.010 0.016
ln(land+1) 0.021 0.016 -0.010 0.012
ration card 0.047 0.027 -0.020 0.013
Educ med -0.604 0.792 0.655 0.857
Educ high -1.754 1.062 0.165 1.592

C necessities (hhsize-1)/10 1.476 0.053 1.138 0.037
headage/120 0.102 0.095 0.129 0.051
married 0.093 0.031 0.030 0.018
ln(land+1) 0.088 0.017 0.051 0.013
ration card 0.030 0.031 -0.050 0.015
Educ med 0.323 0.773 -0.858 0.868
Educ high 1.211 1.041 -0.350 1.607

b luxuries 1.466 0.233 -0.870 0.154
d luxuries 0.073 0.004 0.070 0.004
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Table A3: Structural demand model, full estimates for random effects model

Same A Diagonal A
est std err est std err

A luxuries 0.547 0.015 0.461 0.019
necessities 0.547 0.015 0.572 0.016

R luxuries -0.101 0.180 -0.766 0.409
necessities -3.674 0.348 -0.197 1.517

C luxuries (hhsize-1)/10 0.596 0.058 0.598 0.059
headage/120 -0.058 0.080 -0.074 0.080
married 0.005 0.030 0.008 0.028
ln(land+1) 0.055 0.016 0.056 0.016
ration card -0.054 0.021 -0.053 0.020
Educ med -0.112 0.027 -0.100 0.026
Educ high -0.205 0.042 -0.208 0.046

C necessities (hhsize-1)/10 1.505 0.070 1.480 0.068
headage/120 0.034 0.095 0.024 0.091
married 0.026 0.035 0.031 0.031
ln(land+1) 0.114 0.019 0.113 0.019
ration card -0.095 0.025 -0.092 0.023
Educ med -0.127 0.033 -0.119 0.031
Educ high -0.210 0.043 -0.231 0.044

b luxuries -0.176 0.036 0.352 0.325
d luxuries 0.091 0.004 0.085 0.005
v luxuries 1.022 0.554 -2.898 0.845

necessities 4.119 1.406 -2.165 3.656


