
Appendix D 
Properties of Uniform Price Auctions for IPOs 

Andrei Jirnyi, Northwestern University 
 
While there is a considerable body of literature investigating properties of various auction 
models, there are issues that can only be adequately analyzed by a quantitative model. We do this 
by means of a calibration exercise below. In addition, we investigate the properties of some off-
equilibrium allocations, such as games with naïve participants. 
 
Description of the model IPO auction 
 
There are K identical units of good (e.g. equal-sized lots of IPO shares) that are being auctioned 
to N risk-neutral bidders. Each unit has the same value V to every bidder. V is unknown in 
advance and is distributed according to a distribution function G(V). Every bidder i receives a 
signal Si about the true value of V, such that E{ Si }=V.  
 
Upon receiving their signals Si, the bidders determine their bids Bi(Si). The auctioneer collects 
the bids, determines the clearing price (equal to (K+1)’st highest bid in case of a uniform-price 
auction) and allocates one (and only one) lot of shares to every bidder whose bid is above the 
clearing price.  
 
In the analysis below, we shall assume that both V and Si are distributed lognormally1, and the 
Si’s are independent of each other.  In particular, we consider a small IPO with an ex ante 
expected value of $15MM, with bidders competing for 15 equal round lots of 100,000 shares 
each, so that the expected value of each share is $10. The value V per share is distributed 
lognormally with E(V) equal to 10 and standard deviation of 0.30 for log(V) --  corresponding to 
a standard deviation of 30% for the continuously compounded rate of return to an uninformed 
investor in the stock. It is also possible to obtain additional private signal, S, about the security's 
value, centered at the actual value and also with a standard deviation of 30% for log(S) 
conditional on the realized value, V of a share.  
 
An equilibrium allocation is such where for each bidder i his strategy Bi is the optimal response 
to the collection of other bidders’ strategies { Bj }j≠i:  
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variable, equal to 1 if Bi(Si)>p and  0 if Bi(Si)<p. Ties are assumed to be broken at random, so 
that Wi=(Number of bidders bidding Bi)/N  if Bi(Si)=p. Note that if the unconditional signal 
distribution has no mass points and all bidders’ strategies are strictly increasing, a tie is a 
probability zero event. 
 
 A symmetric allocation is such where Bi=B, i.e. when all bidders’ strategies are the same. 

                                                 
1 ln V and ln SI both Gaussian, with EV = µ, E{Si | V} = V 



The game described above has a unique symmetric equilibrium, described first in Milgrom 
(1981), and which is given by Bi(s) = E{V | Si=s, S-i

(K)=s}, where S-i
(K) is the Kth highest signal of 

all agents other than I, and the expectation is taken over the joint distribution of V and {S-i}. 
 
Bidders’ strategy 
 
Figure 1 gives the bidding functions of several different types of bidders. The 45o line (bold 
dashed line in the figure) corresponds to the strategy of a naïve bidder who always bids his own 
signal – a particularly simple and easy to implement rule of thumb. The bold solid line 
corresponds to that of a somewhat less naïve bidder who bids his posterior estimate of the value, 
conditional on his own signal only. His bid lies between the prior mean of 10 and the value of his 
signal. 
 
Figure 2 shows expected profit of such bidders in symmetric allocations. Note that these are not 
in equilibrium, as deviations can in principle be profitable. Such allocations can, however, arise 
when bidders are either not fully optimizing or have not yet learned enough about the game to 
determine optimal play.  In particular, one can see that bidders’ profits remain positive as long as 
their numbers are low (less than 34 for “bid your own signal” bidders, and 31 for “bid your 
posterior estimate” bidders).  Some naïve bidders may consider such profits as a vindication of 
their strategy and fail to update. However, such naïve bidders would take substantial losses 
should more people decide to participate.  The remaining three lines in Figure 1 correspond to 
bids in the unique symmetric equilibrium described in Milgrom (1981) for varying number of 
participants. Note in particular how the equilibrium bids are practically indistinguishable from 
naïve “bid your own signal” strategy when the number of participants N is close to double the 
number of lots K. Correct determination of the equilibrium strategy, however, requires 
substantial sophistication and knowledge about the model and its parameters (such as the number 
of participants) on part of every bidder. As we shall see below, even small departures from these 
assumptions have a substantial effect on equilibrium allocations. 
 
The solid line in Figure 2 shows equilibrium expected profits to bidders in the symmetric 
equilibrium with N=30. Unlike the allocations with naïve participants, these profits are always 
positive2. They are also quite low.  Such low profits can generally be discouraging to participants, 
and in presence of modest costs to participation and learning about the model and the true value 
they would limit the number of bidders that would be willing to join the auction. In addition, 
such costs may encourage free-riding on the efforts of others as we shall see below. 
 
Figure 3 shows the expected underpricing per share (equal to the negative of the profit of a 
winning bidder). As follows from the previous discussion, in equilibrium one can always expect 
a modest underpricing, but with “rule of thumb” bidders one can potentially see both very 
overpriced and very underpriced issues. 

                                                 
2 Otherwise sitting out the auction by submitting a bid of zero would have been the dominant strategy 



Figure 1.1_1 Explains how the bid will vary with information (signal) for the following cases: 
a.  Naively bidding own signal 
b. More sophisticated: Bid the expected value given signal – not as easy computationally 
c. Bid taking winner’s curse into account (Milgrom solution) – even more sophistication – and all 

bidders must be equally sophisticated and all must know the information structure and how others 
are bidding 
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Figure 2: 1_2 Examines how much E(profit) each type of bidding will give rise to under symmetric behavior 
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Figure 3: 1_3 E(Profit conditional on Winning) – same as expected underpricing 
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As seen from  
 
Figure 4, the risk to participants is also higher in “rule-of-thumb” allocations compared to the 
symmetric equilibrium, except for the bidders who bid their own signal when N=2K. 
 
Figure 4: 1_4:  Standard deviation of the profits (underpricing) conditional on winning 
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Effects of uncertainty 

One underlying source of aggregate uncertainty is the randomness in V, which can only be 
partially revealed in any mechanism as long as the number of signals generated is finite. Figure 5 
shows the auction discount as a function of the standard deviation of V, when the log signals' 
standard deviation is kept constant at 
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Figure 6 shows the standard deviation of the discount. 
 
Figure 5: 5_1: Effects of uncertainty – V is more uncertain – signal has same precision; expected discount 
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Figure 6: 5_3 : Effects of uncertainty – V is more uncertain – signal has same precision; std dev of discount 
( profit conditional on winning) 
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Figure 7: 4_1: Effects of uncertainty – V uncertainty same – signal precision varies – expected discount 
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Figure 8: 4_3 : Effects of uncertainty – V uncertainty same – signal precision varies – std dev of  discount 
( profit conditional on winning) 
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Figure 9. Excess uncertainty (standard deviation of the difference between mean signal and clearing price) 
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Effects of risk-aversion 

Under risk aversion, the symmetric equilibrium strategy is given by  
Bi(s) = argmax E{u(V-Bi)≥0 | Si=s, S-i

(K)=s} 
For the purposes of this exercise, we will consider constant relative risk aversion utility u(c)=c1-

A/(1-A), with initial capital of $30MM for each bidder. From Figure 10 we can see that more risk-
averse bidders demand higher expected profit, although even for very high values of A profit is 
modest (even when N=20 and A=55 the expected profit is only $0.6, or 6% of ex ante expected 
share value of $10) and quickly declining with an increase in number of bidders. Figure 11 
shows that underpricing follows a similar pattern.  
 
Figure 10: Effects of risk aversion on bidders expected profit 
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Figure 11: Effects of risk aversion on underpricing 
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From Figure 12 we can see that price discovery in auctions with more risk-averse participants is 
slightly less efficient, although in all cases uncertainty about the discount quickly declines with 
N. As we shall see below, this follows from the assumption that the bidders know precisely the 
number of participants and can condition their strategies on that knowledge. If the number of 
participants is uncertain, this will no longer be true, and an increase in expected N may cause an 
increase in both discount and risk. 
 
Figure 12: Effects of risk aversion on standard deviation of auction discount 
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Deviating bids and free-riding 
 
Now suppose that unbeknownst to others, one of the agents instead of following the equilibrium 
strategy says that he is willing to buy one unit at whatever was the auction clearing price (so 
called “market bid”), effectively bidding an infinitely high amount. The dashed and solid thin 
line in Figure 15 show correspondingly his expected profit and other bidders' expected profit, 
depending on the number of participants. 
 



Figure 13: 2_1: Effect of Free Rider -- one bidder makes a high bid – others do not know that one person is 
doing that 
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Note that just one such deviating bidder out of 80 can make everyone’s profits turn into losses.  
Other types of deviations also affect equilibrium outcome, although not necessarily quite as 
much – see Figure 14 as an example of a situation where one bidder in the symmetric 
equilibrium chooses to just bid his own signal as opposed to the equilibrium strategy. 
 
Figure 14: 8_1: Effect of mistake; one bidder bids own signal – others do not know that one person is doint 
that 
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Such deviations, of course, cannot be profitable in equilibrium. However, there are factors such 
as information gathering costs that can change this result, and consequently affect the 
equilibrium outcome. 

Information gathering 

To put these numbers into perspective, suppose a participating institution would have to incur a 
cost of $10,000 to acquire the private signal, or 1% of the amount bid. This corresponds, for 
example, to two weeks of labor of a $250,000 a year analyst. 
 
If the underwriter is able to successfully screen participants and only allow those who actually 
performed due diligence and did similar analysis, such expenditure would be profitable when the 
number of participants does not exceed 24, which would be the equilibrium number of bidders in 
this situation. 
 
Now suppose that the deviating bidder, does not expend the effort necessary to obtain additional 
information about the security. Instead, he participates in the auction with an arbitrary high bid. 
Figure 15 shows profits (net of information acquisition) to the agents in this case – as we can see, 
the deviating agent is now better off than both the non-deviating agents and the agents in the 
symmetric equilibrium. However, other bidders are much worse off now. Risk to all agents also 
goes up substantially, as seen from Figure 16. 
 



Figure 15: 2_2: Effect of Free Rider one bidder makes a high bid – others do not know that one person is 
doing that; information is costly – almost the same as Fig 10. 
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Figure 16: 2_3 Effect of Free Rider one bidder makes a high bid – others do not know that one person is 
doing ; costly information; almost same as … 
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Such deviations are, of course, profitable for the auctioneer -- indeed, the amount of underpricing 
falls, and overpricing can be expected when the number of participants is sufficiently large, as 
shown in Figure 17. 
 



Figure 17: 2_4: Auction discount with one deviating agent (others do not know about the deviation) 
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As before, such unexpected deviations cannot persist in equilibrium. If other bidders anticipate 
this behavior, they would adjust their bids downwards to compensate for the potential losses.  

An asymmetric equilibrium 

Consider an asymmetric allocation similar to the one discussed above, but where the non-
deviating bidders realize that one of them may be playing a different strategy and adjust their 
bids accordingly. In case of one bidder submitting a “market bid”, their problem reduces to the 
standard Milgrom setup, but with N-1 bidders competing for K-1 lots.  
 



Figure 18: 3_1: Bidders’ profits in an equilibrium with one deviating bidder 
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The downward bid adjustment on the part of informed bidders in this equilibrium has a dramatic 
effect on underpricing: as can be seen from Figure 19, the discount is much larger than either in 
the symmetric case or, moreover, in the off-equilibrium allocation when the deviation is 
unexpected. 
 
Figure 19: 3_4: Discount in an asymmetric equilibrium with one deviating agent 
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Note that the restriction that the uninformed bidders submit "market bids" is not binding in this 
case: as seen in  
Figure 20, the expected return to an uninformed bidder is increasing in the amount bid.  
 

Figure 20: 7_1: Deviating bid and profit of a deviating agent 
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As the number of deviating bidders increases, so do the profits from deviations (see Figure 21) 
and the auction discounts (see Figure 22). This happens because such deviations decrease the 
number of informed bidders, and thereby reduce competition between them. 
 



Figure 21: 6_1: Effect of Free Riders  on profits: more than one bidder makes a high bid  
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Figure 22: 6_4 
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  It is, however, crucial that D<K for such an equilibrium to exist. When D≥K, there would be no 
units remaining for the informed bidders, and the "informed bidder" market that determines the 
price would disappear. 
 
 



Uncertainty about number of participants 
 
The number of participants in an auction is an important factor in determining the optimal 
strategy – compare, for example, equilibrium bidding functions corresponding to different values 
of N in Figure 1. So far, we have always assumed that the number of participants in an auction is 
fixed. However, in practice it has substantial and this variation substantially affects the bidders’ 
equilibrium strategy.  
 
Suppose the number of participants in a given auction N is exogenously determined. There is a 
pool of N0 potential participants. The actual number of bidders N can be equal to N1 with 
probability ξ and N2 with probability 1-ξ, where N1<N0 and N2<N0.  As before, the equilibrium 
strategy is still given by  

Bi(s) = argmax E{u(V-Bi)≥0 | Si=s, S-i
(K)=s, agent i participates} 

 
with the expectation taken over the joint distribution of V, {S-i} and N. 
 
Figure 23 shows the bidding functions of bidders with two different degrees of risk aversion in 
the deterministic-N case with N=20  and in a random-N case with N1=20, N2=150. The number 
of lots K is the same in both cases, and all other parameters are as in the previous simulations. 
Note that under constant relative risk aversion the bidders will never bid more than their initial 
capital.    
 
Figure 23: 13_1: Random number of participants; everyone knows N is random 
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Effect on underpricing 

Figure 24 shows the amount of underpricing in auctions with random number of participants as a 
function of N2 (as before, N1 is kept fixed at 20). 
Figure 24: 13_2: Auction discount as a function of N2 
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Figure 25 shows auction discount as a function of ξ. The deterministic-N case corresponds to the 
points on the boundary (N=20 on the left, N=150 on the right). We can see that with sufficiently 
high degree of risk-aversion equilibrium auction discount increases substantially – reaching $3.7 
per share, or 37%, with only a 10% chance of a 10x oversubscription, and even under risk-
neutrality it can be around 20%. 
 



Figure 25: 14_1: Auction discount as a function of ξ for different values of risk aversion 
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