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Abstract

The parameters of the Taylor rule relating interest rates to inflation and other
variables are not identified in new-Keynesian models. Thus, Taylor rule regressions
cannot be used to argue that the Fed conquered inflation by moving from a “passive”
to an “active” policy in the early 1980s.
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1 Introduction

The new-Keynesian Taylor-rule approach to monetary economics provides the current
standard model of inflation determination, for modern fiat-money economies in which the
central bank follows an interest rate target, ignoring monetary aggregates.

Any good theory relies on a stylized interpretation of important historical episodes.
Keynes had the General Theory of the great depression. Friedman and Schwartz had the
Monetary History of the US and UK. The central story for the new-Keynesian Taylor
rule is that U. S. inflation was stabilized in the early 1980s, by a change from a “passive”
policy in which interest rates did not respond sufficiently to inflation, to an “active” policy
in which they did so. Most famously, Clarida, Gali and Gertler (2000) run regressions
of interest rates on inflation and output. They find inflation coefficients below one up to
1980, and above one since then.

I argue against this central interpretation of the historical record. To see the key
point, we need to understand how new-Keynesian models work. They do not say that
higher inflation causes the Fed to raise real interest rates, which in turn lowers “demand,”
which reduces future inflation. That’s “old-Keynesian,” stabilizing logic. Instead, new-
Keynesian models say that higher inflation would lead the Fed to raise future inflation.
For only one value of inflation today will we fail to see inflation that either explodes or,
more generally, eventually leaves a local region. Ruling out non-local equilibria, new-
Keynesian modelers conclude that inflation today jumps to the unique value that leads
to a locally-bounded equilibrium path.

In this logic, however, interest rates and inflation that increase in response to past
inflation are a threat that is never realized in the observed equilibrium. The dynamics of
inflation (and real variables) in the observed equilibrium can tell us nothing about the dy-
namics of other, unobserved equilibria. The crucial coefficients, including the parameters
of the interest rate policy rule are not identified. The change in regression coefficients
pre- and post- 1980 tells us nothing about determinacy. If you run an interest rate regres-
sion in artificial data generated by a new-Keynesian model, the coefficient you measure
can be greater or less than one, and it contains no information about the true policy-rule
coeflicient.

Outline and central results

I start by establishing the lack of identification in new-Keynesian models. 1 first
study a simple classic model, featuring a constant real interest rate and a policy rule
i =1+ ¢,m + o, where z; is a monetary policy disturbance and ¢, > 1. I show that
the estimated policy rule in this circumstance recovers the stationary dynamics of the
disturbance, not the explosive dynamics represented by ¢, and I show that ¢, does not
enter anywhere in the equilibrium dynamics of observable variables; ¢, is not identified.
The central point of the new-Keynesian model is that endogenous variables such as
jump in response to disturbances such as z;, in order to head off threatened explosions.
Alas, this jump makes the right hand variable 7; inescapably correlated with the error
term x; in a regression.



I then study the standard three-equation new-Keynesian model. Following King
(2000), I express the policy rule as iy = i} + ¢, (1, — ;) where 4} is the “natural” or
“Wicksellian” rate of interest, a function of underlying disturbances to the economy, and
7y is inflation in the specified equilibrium. ¢, appears nowhere else, and since 7, = 7}
in equilibrium, the equilibrium clearly contains no information about ¢... The right-hand
variable 7, — 7;that must move to identify ¢, is always zero in equilibrium.

As the most general non-identification statement, I analyze a general linear model with
some eigenvalues larger than one in absolute value and some less than one. I show that
the eigenvalues larger than one can never be measured when we use the unique forward-
looking locally-bounded equilibrium, and that equilibrium dynamics are the same as a
particular equilibrium of the same model in which those eigenvalues are less than one.

This paper’s title includes “review” and so does a substantial part of its body. Surely,
famous modelers and empiricists have thought about these questions? They have, and
carefully, so I must review their attempts to address these questions. Identification follows
from assumptions, so all we can ever do is figure out what the assumptions are, and decide
if they are plausible or not.

I start by examining assumptions made on the policy rules in order to identify their
coefficients in regression-style analysis. These amount to standard assumptions to force
right hand variables to be uncorrelated with error terms. In particular, the monetary
policy disturbance, though serially correlated and correlated with right hand variables in
theory, is assumed i.i.d. and independent of right hand variables, and the stochastic inter-
cept, which in theory follows the “Wicksellian” or “natural” rate of interest, is assumed
constant. Both assumptions are severe constraints on the sorts of models and equilibria
specified by theory.

I next examine “full-system” estimates that estimate all of the parameters of the model,
and check all of the model’s predictions. These are obviously the most powerful methods
with which one can address poor identification. A reading of the literature suggests many
identification problems, and that no paper has even asked if parameters in the region of
indeterminacy can generate observationally equivalent time series.

Since the models in the literature are complex and only analyzable by numerical meth-
ods, I study identification in a tractable fully-specified model. I find that structural pa-
rameters of the economy can be identified. However, policy rule parameter identification
only rests on strong and implausible assumptions. One can identify a two-parameter rule
—say, iy = 1+ ¢p 0T + ¢p 1 Eymi1 + 1y — but allowing any more parameters destroys
identification. If one allows responses to output as well as inflation, or if one allows the
central bank to respond to shocks as well as endogenous variables, all identification is lost.
In particular, there are parameters from the indeterminacy region that produce observa-
tionally equivalent dynamics to any set of parameters from the determinacy region. And
even the minor identification successes are dependent on strong assumptions on the lag
length (AR(1)) and number (three) of the disturbances in the model.

Lubik and Schorfheide (2004) suggest a clever way of identifying the central determi-
nacy question without measuring particular parameters. I review their suggestion, and I



show that it hinges crucially on the specification of the stochastic process for the unob-
served disturbances. I prove that one can always construct a process for the disturbances
that accounts for their observations with either a determinate (¢ > 1) or indeterminate
(¢ < 1) model.

I examine Taylor’s (1999) thoughts on how a Taylor rule should operate. This is an
entirely old-Keynesian model, with no forward-looking terms. In this model ¢, > 1 is a
condition for stable roots and backward-looking solutions, not the other way around. The
parameters of the policy rule can be identified under this model. Alas, the model lacks
any microfoundations, and not even Taylor takes it very seriously.

Finally, I review related literature that points to related various identification problems
in new-Keynesian models.

An acknowledgement

Of course, the point that behavior in other equilibria or out of equilibrium cannot be
measured from data in a given equilibrium is both well known and seemingly obvious,
once stated, and applies broadly in macroeconomics. Among many others, Sims (1994,
p. 384) states as one of four broad principles, “Determinacy of the price level under
any policy depends on the public’s beliefs about what the policy authority would do
under conditions that are never observed in equilibrium.” (He also states that the four
principles are “not new.”) Cochrane (1998) shows analogously that one cannot test the
off-equilibrium government behavior that underlies the fiscal theory of the price level, as
Canzoneri, Cumby, and Diba (2001) attempt; Ricardian and Non-Ricardian regimes also
make observationally equivalent predictions for equilibrium time series. Identification in
dynamic rational-expectations models is a huge literature, and most of the identification
principles and pitfalls I apply and find here are well known. Sims (1980) is a classic
statement. The devices I find are used to identify new-Keynesian models fit naturally
into categories that he famously labeled as “incredible,” in particular exclusion of variables
and limitation on the stochastic process of unobserved disturbances. My contribution is
only to apply these well-known principles to new-Keynesian models.

2 Identification

2.1 A simple model

We can see the main identification point in a very simple model consisting only of a Fisher
equation and a Taylor rule describing Fed policy.

it =r+ Etﬂ-tJrl (1)

’it:T+¢7Tt+£Ct (2)

where i; = nominal interest rate, m; = inflation, » = constant real rate, and x; = random
component to monetary policy. The coefficient ¢ measures how sensitive the central bank’s



interest rate target is to inflation. An “active” Taylor rule specifies ¢ > 1. The monetary
policy disturbance x; represents variables inevitably left out of any regression model of
central bank behavior, such as responses to financial crises, exchange rates, time-varying
rules, and so forth, and it includes any Fed mismeasurement of potential output and
structural disturbances. It is not a forecast error, so it is serially correlated,

Tt = PTt-1 + &¢. (3)

The essential simplification of this model relative to the full new-Keynesian models that
follow is that the real interest rate is constant and unrelated to other endogenous variables,
output in particular.

We can solve this model by substituting out the nominal interest rate, leaving only
inflation,
Eimig = om + x4 (4)

Following standard procedure in the new-Keynesian tradition, when ¢ > 1 we solve this
difference equation forward, restricting attention to the unique locally bounded (nonex-
plosive) solution, giving us

M= =3 B ) = S (5)

Since 7; is proportional to x;, the dynamics of equilibrium inflation are simply those of
the disturbance z;,

Ty = PT_1 + Wy (6)
(wy = —&/ (@ — p).)

Using (1) and the solution (6), we can find the equilibrium interest rate,
it :7’+Et7Tt+1 :T+p7Tt. (7)
There is no error term. Thus, a Taylor-rule regression of i; on mw; will estimate the

disturbance serial correlation parameter p rather than the Taylor rule parameter ¢.

What happened to the Fed policy rule, Equation (2)? The solution (5) shows that the
right hand variable 7, and the error term x; are correlated — perfectly correlated in fact.

Since the issue is correlation of right hand variables with errors, perhaps we can run
the regression by instrumental variables. Alas, the only instruments at hand are lags of
7, and ;, themselves endogenous and thus invalid instruments. For example, if we use all
available lagged variables as instruments, we have from (6) and (7)

E(Wt |7Tt717 i1, T2, Z‘tfz‘---) = P71

. . . 2
B (|1, 041, T2, G4—9....) = T4 p Ty
Thus the instrumental variables regression gives exactly the same estimate

E(if| Q1) =1+ pE(m| Q1)

5



Is there nothing clever we can do? No. The equilibrium dynamics of the observable
variables are given by (6) and (7),

Ty = PT—1 + Wy

'it = T+p7Tt

The equilibrium dynamics do not involve ¢. They are the same for every value of @.
¢ 1s not identified from data on {i;,m} in the equilibrium of this model. The likelihood
function for {m,i;} does not involve ¢. The only point of ¢ is to threaten hyperinflation
in order to rule out equilibria. If the threat is successful in ruling out hyperinflation
equilibria, it does not matter at all how fast the Fed-threatened hyperinflation would
have come.

This discussion assumed ||¢|| > 1, but there are also equilibria with ||¢|| < 1 that gen-
erate exactly the dynamics (8)-(8), so we cannot even identify that the data are generated
from the region ||¢|| > 1. For any ¢, this model has multiple locally-bounded equilibria
given by

i1 = Oy + Ty + Oppa

where d;,1 is any random variable with E£;d,,; = 0. We can think of {m(, J;} indexing all
the possible equilibria. If ||¢|| > 1, the requirement of a locally-bounded equilibrium and
the resulting forward-looking solution (5) amount to the particular choice of equilibrium

To Et+1

T s = .
p—¢ T =9

We can make the same choice of equilibrium in the ¢ < 1 case. If we select this equilibrium,
we have

To =

o) €1 ,0170-’-61 T
— + a0+ = — .
p—¢ p—¢  p—9¢  p—0

Continuing, we have (5) again, with observable implications (8)-(8).

T =¢mo+To+ 001 =20

There is a general point at work here. Conventionally, we don’t even try to solve
new-Keynesian models when there are not enough unstable eigenvalues. But there is no
reason not to do so: one may make the same equilibrium selection choice for ¢ < 1 that
one makes for ¢ > 1. We are not forced to do so by the locally-bounded criterion, but
it is still a valid equilibrium, and a useful one for checking whether parameters from
the indeterminacy region can replicated the observable dynamics of a determinate set of
parameters.

There are two key ingredients to the lack of identification: A model that only restricts
expectations, and the fact that disturbances are not observable. As a result of equation
(1), the economics of this model can only determine expected inflation, not ex-post in-
flation. The distinguishing feature of the microfounded new-Keynesian models reviewed
below is similarly that an F;z;,; appears in each equation where their old-Keynesian pre-
decessors had an x;. This feature leads to the multiple equilibria. For an example of the
second point, consider the standard model of asset pricing with a risk-neutral investor and



hence a constant expected return R. To make the analogy even closer, suppose dividends
are known one period ahead of time, and follow an AR(1). Then we have

di = pdi1+ ¢
By (pr11+dy) = Rp
Since R > 1, we solve the second equation forward to obtain

=1 1
pe= B gt = gt
§=0

The model and solution are exactly the same as above, with d; = —x, p = 7, R = ¢.
Yet in this model R is identified: We can simply regress p;11 + d;y1 on p; or take the
sample average return. The difference is that d; is directly observable in this case, where
x¢ is not. Were dividends unobservable, we could not measure the average return, and
in particular we could not tell if it were greater than or less than one.

Loisel (2007) and Adao, Correia and Teles (2007) study rules that exactly offset the
expected future values of the economic model, in order to eliminate multiple equilibria.
Loisel proposes (simplified to this setting)

i =1+ B+ (me— z) (8)

where 1) is any nonzero constant, and z; is any exogenous random variable. If we merge
this rule with the Fisher equation (1), we obtain a unique equilibrium

T = 2. (9)

As I show in Cochrane (2007), this sort of rule is a limit of the usual sort of rule, in which
the forward-looking eigenvalues are driven to infinity. For the current point, Equation (9)
makes it clear that time-series from the equilibrium of this model cannot be used to check
whether the coefficient of the rule (8) on future inflation is in fact one, or to measure the
coefficient ¢/ on current inflation.

2.2 Identification in new-Keynesian models

One may well object at the whole idea of studying identification in such a stripped down
model, with no monetary friction, no means by which the central bank can affect real
rates, and a single disturbance. It turns out that the simple model does in fact capture
the relevant issues, but one can only show that by examining “real” new-Keynesian models
in detail and seeing, at the cost of some algebra, that the same points emerge.

The excellent exposition in King (2000) makes the non-identification theorem clear. I
use that structure here. The basic model is

w = By —o(re—r)+xa (10)
= T+ By (11)
T = BEmp+y(ye—G) +om (12)
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where y denotes output, r denotes the real interest rate, » denotes the nominal interest rate,
7 denotes inflation, 3 is exogenously-varying potential output, and the x are disturbances.
The disturbances x4 and x,; can be serially correlated. I use a Roman letter (x not ¢)
and the word “disturbance” rather than “shock” to remind us of that fact.

While seemingly ad-hoc, the point of the entire literature is that this structure has
exquisite micro-foundations, which are summarized in Clarida, Gali and Gertler (1999),
King (2000), Woodford (2003). The first two equations derive from consumer first order
conditions for consumption today vs. consumption tomorrow. The last equation is the
“new-Keynesian Phillips curve,” derived from the first order conditions of optimizing firms
that set prices subject to adjustment costs.

For the identification question, we can simplify the analysis by studying deviations
from a given equilibrium rather than the equilibrium itself, following King (2000). For
this purpose, it’s convenient to solve the model backwards: find the interest rate that
supports any equilibrium output process rather than (as usual) find equilibrium output
for a given interest rate rule. Start with an equilibrium process for output {y;}. The
“neutral” or “no gap” equilibrium y; = ¥, is particularly nice, but I use the general
case to emphasize that results do not depend on this choice. From (12) we can find the
required path for equilibrium inflation 7;; from (10) we can find the required path for the
equilibrium real rate 7}, and then from (11) we can find the required equilibrium nominal
interest rate ¢} :

o0
™ = E Zﬁj V(Wi g = Ters) + Trig] (13)
=0
i = rf+ Bty (15)
Putting it all together,
=TT (B — i) + o at Er Zﬁ VW1 = Gregir) + Trriji] - (16)

=0

In particular, the no-gap equilibrium y; = ¥; is achieved with

" Lo N ‘
=1+ pu (EtYr1 — Yp) + o Lt + L zgﬁjxmﬂ'ﬂ (17)
J:

Using tildes to denote deviations from the * equilibrium, ¢ = y; — y;, we can subtract
the values of (10)-(12) from those of the % equilibrium to describe deviations from that
equilibrium as

it - ft —|— Etﬁ-t—&—l (18)

Y = Expa — omy (19)
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Ty = BE T 1 + YT (20)

This is the same model, but without constants or disturbances.

Now it is clearly true that if the Fed sets i, = i}, i.e. % =0, then 7, =0, 3y = 0 are
an equilibrium. But setting ¢, = ¢} does not determine that this is the only equilibrium.
Equations (10)-(12) only determine expectations F;g;.1, 47141, so arbitrary shocks to
output and inflation can occur so long as they are not predictable. Furthermore, the
dynamics of (10)-(12) are stable, so these multiple equilibria all stay near the steady
state.

To determine output and the inflation rate, then, new-Keynesian modelers add to the
specification i; = ¢} of what interest rates will be in this equilibrium, a specification of
what interest rates would be like in other equilibria, in order to rule them out. King
(2000) specifies Taylor-type rules in the form

i =1 + ¢g (m — ;) + ¢y (Eymes — Bymypy) (21)

or, more simply,
it — ¢0ﬁ—t + ¢1Etﬁ-t+l-

For example, with ¢, = 0 the deviations from the * equilibrium follow!

Egipr | _ 1] B+0oy —o(1—B¢) Ut
[Etﬁt+l}_ﬁ|: —y 1 }lﬁt} (22)

The eigenvalues of this transition matrix are

1
A= 55 (04840 £ VT B0 — 450+ 0760)) (23)
If we impose oy > 0, then both eigenvalues are greater than one in absolute value if

Py >1

or if 143
_|_
by < — (1 + 20—7> . (24)

1Use (18) to eliminate 7, and use iy = ¢, giving
Ut = Bt — 0(doTe — Eifiega).

In matrix form, then, we have

[1 0}{&@&1]:[1 U%}{.@t}
0 8 By - 1 T

|:Etgt+1]:l|:ﬂ —U}[l U%][ﬂ]
Etﬁ-t—i-l /6 0 1 -y 1 ﬁt ’

33

Equation (22) follows.



Thus, if the policy rule is sufficiently “active,” any equilibrium other than i =gy =7 =0

is explosive. Ruling out such explosions, we now have the unique equilibrium.

Now, I can use King’s expression of the Taylor rule (21) to make the central identi-
fication point. In the * equilibrium, we will always see m; — m; = 0. Thus, a regression
estimate of (21) cannot possibly estimate ¢, ¢,. There is no movement in the necessary
right hand variables. More generally, ¢, and ¢, appear nowhere in the equilibrium dy-
namics characterized simply by 7 = § = 7 = 0, so they are not identified. The same
dynamics of the * equilibrium hold for any values of ¢, and ¢,, which is another way of
saying “not identified.” Taylor determinacy depends entirely on what the Fed would do
out of the * equilibrium, which we can never see from data in that equilibrium.

King recognizes the problem, writing in footnote 41,

“The specification of this rule leads to a subtle shift in the interpretation
of the policy parameters [¢,, ¢,]; these involve specifying how the monetary
authority will respond to deviations of inflation from target. But if these
parameters are chosen so that there is a unique equilibrium, then no deviations
of inflation will ever occur.”

King does not address the implications of this non-identification for empirical work.

The desired, * equilibrium of the new-Keynesian model does contain relations between
interest rates, output, and inflation. For example, we can write from (13)-(15)

iy =T+ p (Etyt+1 - yt) + By + e

and I investigate below further substitutions to eliminate x4. The problem is, this relation,
together with the other equations of the model, implies stable dynamics and hence multiple
equilibria. To force unstable dynamics on the system, in order to rule out the multiple
equilibria, we have to imagine that the central bank would respond more strongly to
deviations of inflation or output from this equilibrium than it does to movements in
inflation and output in the equilibrium, as expressed in (21).

It is this final step that causes all the trouble. Since we never observe 7; # 7}, it raises
my econometric point that such deviations are not identified. It raises the corresponding
theoretical points that the Fed could not signal its ¢ behavior by any visible action, and
that agents in the economy would be hard-pressed to learn such coefficients as well.

2.3 Regressions in new-Keynesian model output

What happens if you run interest-rate regressions in artificial data from a new-Keynesian
model? We know the answer for the simple model given above, and we have a theorem that
the result will not measure determinacy. Still, it would be interesting to know the answer
in the standard three-equation new-Keynesian model. If not ¢, and viewed through the
model, what did Clarida, Gali and Gertler (2000) measure?
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In general, the answer is a) not ¢ and b) a huge mountain of algebra. While easy
enough to evaluate numerically, such answers don’t give much intuition. For some special
cases, though, I can find intelligible and interesting algebraic formulas. I present the
algebra in the Appendix.

Suppose the central bank follows, and we estimate, a rule of the form

i = QT+ Ty
Tit = PiLit—1,
and the economy follows the standard three-equation model (10)-(12). When this is the

only disturbance to the system (no disturbances x4, =, and no variation in the natural
rate ¢;), the estimated coefficient in a regression of i; on 7 is
; (1 —p;) (L —p;5)

by = p; + o (25)

First, note that ¢, appears nowhere in the right hand side. Second, we start with
the autocorrelation of the monetary policy disturbance p;, as in the simple case studied
above. Third, there are now extra terms, involving the parameters of the other equations
of the model, in particular the intertemporal substitution elasticity o and the Phillips
coefficient . The parameters o and 7 can take on small values, so ¢, can be greater than
one.

Suppose instead that the central bank follows, and we estimate, a rule of the form
i = O EyTi + Ty,

i.e. reacting to expected future inflation. In the same case of the three-equation model,
the estimated coefficient is
. 1—0.)(1 = p
o7p;
Once again, ¢, is absent from the right hand side. In this case, we generically find a
coefficient greater than one, so long as parameters obey their usual signs, though this
finding has nothing to do with the actual Taylor rule.

This observation solves a puzzle of the simple example: How can Clarida, Gali and
Gertler (2000) and others find coefficients greater than one? In my simple example,
in which qAﬁo estimated the autocorrelation of the policy disturbance p;, this was not
possible. One might suspect that they had measured something interesting by finding
a coeflicient greater than one. Here, we see that estimated coefficients greater than one
are perfectly possible, even in the context of the new-Keynesian model. And they are
perfectly uninformative about the true ¢.

2.4 General case; system non-identification

One might suspect that these results depend on the details of the three-equation model.
What if one specifies a slightly different policy rule, or slightly different IS or Phillips

11



curves? The bottom line is that when you estimate dynamics from stationary variables,
you must find stable dynamics. You cannot measure eigenvalues greater than one. In
the forward-looking bounded solution, shocks corresponding to eigenvalues greater than
one are set to zero.

To study identification, I trace the standard general solution method, as in Blanchard
and Kahn (1980), King and Watson (1998), and Klein (2000). The general form of the
model can be written

Vir1 = Ay, + Ceyy (27)

where y; is a vector of variables, e. g. y;, = [ Yo Tt % Tor Tay ],. By an eigenvalue
decomposition? of the matrix A, write

yir1 = QAQ 'y, + Ceyp

where A is a diagonal matrix of eigenvalues,

A
A= A2 ,

and Q is the corresponding matrix of eigenvectors.

Premultiplying (27) by Q ™!, we can write the model in terms of orthogonalized vari-
ables as

Zi1 = Az, + & 4

where
7z, = Q lyy; €1 = Q 'Ceyi.

Since A is diagonal, we can solve for each z; variable separately. We solve the unstable
roots forwards and the stable roots backwards

Xl > 1z =) yEtgtﬂ =0 (28)
j=1 "

NI < 10z =) M (29)
j=0

Zit = )\iZfL'tfl + git‘ (30)

Thus, we choose the unique locally-bounded equilibrium by setting the forward-looking
z;; variables and their shocks to zero.

Denote by z* the vector of the z variables corresponding to eigenvalues whose absolute
value is less than one in (29), denote by &; the corresponding shocks, denote by A* the

2King and Watson (1998) and Klein (2000) treat more general cases in which A does not have an
eigenvalue decomposition. This generalization usually is just a matter of convenience, for example whether
one substitutes in variable definitions or leaves them as extra relations among state variables.
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diagonal matrix of eigenvalues less than one in absolute value, and denote by Q* the
matrix consisting of columns of Q corresponding to those eigenvalues. Since the other z
variables are all zero, we can just drop them, and characterize the dynamics of the y; by

* S * %k *
z;, = Nz, +§&

. * %
y: = t 2y

The roots ||A|| that are greater than one do not appear anywhere in these dynamics.
Thus we obtain general statements of the identification lessons that applied to ¢ in the
simple example: 1) We cannot measure eigenvalues greater than one from the equilibrium
dynamics of this model. Equation (28) shows why: 2) There is no variation in the linear
combinations of variables you need to measure |A|| > 1. For this reason, 3) The equilib-
rium dynamics are the same for every value of the eigenvalues supposed to be greater than
one. The latter statement includes values of those eigenvalues that are less than one. The
equilibrium with A greater than one and no shocks by the new-Keynesian equilibrium
selection criterion is observationally equivalent to the same no-shock equilibrium with A
less than one.

This solution gives rise to more variables y than there are shocks, so it is stochastically
singular. We have

zy = Qilb"t

which describes the linear combinations of y that are always zero. However, not all
elements of y are directly observable. The “stochastic singularity” then links endogenous
observables (y, m,7) to disturbances (zr,x4). Similarly, the expectational errors in &, ; =
Q !Ceyyq jump to offset any real shocks so that &, = 0 for |A;]| > 1 at all dates.

New-Keynesian models are engineered to have “just enough” forward looking roots. In
new-Keynesian models, some of the shocks are arbitrary forecast errors. The model stops
at Ey;1 = something else. In this case the backwards solution leads to indeterminacy
since forecast errors can be anything. Hence, in new-Keynesian models specify that
some of the roots are explosive (forward-looking) so that the forecast errors are uniquely
determined and there is a unique local solution.

The central question for determinacy is whether eigenvalues of the system are greater
than one. These are, in general, properties of the system as a whole, not just properties
of a single parameter, set of parameters, or structural equation. For example, the lower
boundary (24) in the simple model depends on structural parameters /3, o,y as well as the
policy rule parameter ¢. Thus, even if it is possible to correctly identify the coefficients of
the policy rule, we expect that we will not be able in general to identify other parameters
(o,7), which control “determinacy” or “indeterminacy.”

2.5 Hopes for identification

How can we get around these non-identification results? How do new-Keynesian modelers
get around the results? How do their computer programs produce estimates, and presum-
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ably with non-singular Hessian matrices? Obviously, we must add some assumptions or
restrictions on the models.

First, we can think about restricting the policy rule in order to remove the troublesome
correlation of right hand variable with error terms, or at least to produce some valid
instruments. More deeply, the central problem in (21) is that the parameters ¢ governing
the response of interest rates to deviations from the equilibrium can’t be seen since we
never observe deviations from that equilibrium. Obviously, we can try restricting the
policy rule so that this response to deviations from the * equilibrium are tied to some
aspect of behavior in that equilibrium.

Second, I proved that the unstable eigenvalues in (31)-(31) cannot be identified from
equilibrium time series. However, eigenvalues are not directly measured. FEigenvalues
are functions of the underlying parameters, i.e. A(5,7, 0, ¢y, ¢;). Perhaps the structure
of the model links the stable eigenvalues to the unstable eigenvalues. Perhaps we we can
identify the underlying structural parameters from the stable eigenvalues, and then infer
the value of the unstable eigenvalues, or at least infer that they are greater than one in
absolute value.

With these thoughts in mind, I both review the (often implicit) identification assump-
tions that new-Keynesian modelers have made, and I explore alternative assumptions one
might make.

There are two basic approaches to identification and estimation. First, one can follow a
single-equation approach, as in Clarida, Gali, and Gertler (2000): measure the Fed policy
rule, without trying to measure the structural parameters (3,7,0) of the rest of the
economy. Second, one can specify and estimate the whole model, and therefore exploit
cross-equation restrictions that may give better identification. I consider each approach
in turn.

3 Policy-rule identification

3.1 Policy rules in theory

Identification is a property of models, not a property of data. Therefore, before examining
empirical specifications, we should examine what sort of policy rules are specified by new-
Keynesian models. Only then can we understand the plausibility of restrictions that are
imposed in actual empirical work. The crucial specifications I highlight are 1) the presence
of a serially correlated stochastic intercept, which is a function of real disturbances to the
economy 2) the presence of all endogenous variables on the right hand side and 3) the
likely serial and cross-correlation of the monetary policy disturbance.

The stochastic intercept

Start with the simple Taylor rule (21),which I repeat here
i =iy + ¢ (e — 7f) + &y (EtWtH - Wrﬂ) : (31)
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The first central ingredient of this rule is the time-varying intercept ¢;. In this expression
of the Taylor rule, ¢ is the interest rate of the desired, * equilibrium. It is a function of
the underlying disturbances to the economy, as given in (17) and (16).

Many theoretical treatments and most empirical work are written with Taylor rule
parameters that depend on actual variables, e.g. ¢, rather than deviations from equi-
librium, e.g. ¢, (m; — 7). This is not really a change in specification, it just means folding
the 7 terms into a larger time-varying intercept, i.e.,

iv = (if — ¢} — G1Eyy1) + G + 1 By (32)

Since equilibrium ¢*, 7* are functions of underlying disturbances, we can still understand
the model Taylor rule as one with a time-varying intercept.

Woodford (2003) emphasizes the need for such a shifting intercept. The foundation
of optimal “Wicksellian” policy is to allow the interest rate target to shift up and down
following the “natural” rate of interest, determined by real disturbances to the economy.
Equation (17) is a simple example of the time-varying intercept needed to achieve the
no-gap equilibrium y; = ;.

A stochastic intercept of the form (32) poses a serious challenge to empirical work. Very
few estimates include the stochastic intercept, especially in single-equation approaches for
which measuring disturbances to the other equations is impossible. The “stochastic inter-
cept” is therefore a component of the error term. Since it is a function of the underlying
economic disturbances, it is serially correlated, and it is correlated with the right hand
variables (output, inflation, etc.), since equilibrium values of the latter are functions of
the same disturbances.

The absence of a stochastic intercept is the same thing as the restriction that the
central bank’s response to inflation and output in equilibrium is the same as its response
to inflation and output in alternative equilibria. This is easy to see just by writing

Z.t :7—’_ ¢07rt :7—’_ ¢07T:—|—¢0 (ﬂ_t_ﬂ_:)

For this reason, it is a very appealing assumption. It gets right to the heart of the non-
identification problem. It also is sensible that the Fed might want to enhance its credibility
by tying its alternative-equilibrium threats to in-equilibrium behavior. With this kind of
rule we can imagine agents learning about the Fed’s responses by seeing data on an equi-
librium. It’s also clear how this assumption helps identification. If we solve models with
this kind of policy rule, equilibrium output, inflation and interest rates vary as functions
of current and expected future values of the disturbances x4, z.¢,7;, discounted by the
forward-looking eigenvalues (e.g., Equation (23)) of the transition matrix. Thus, it’s
straightforward to see that equilibrium dynamics are affected by the choice of parameter
¢o- Finally, rules that must be written with shocks raise the question, how can the Fed
measure and respond to shocks that we can’t recover from endogenous variables?

Do we really need a stochastic intercept?

How harmful is it to assume away the stochastic intercept? The answer is that policy
rules without a stochastic intercept can only generate a restricted set of equilibria, and
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policy rules that respond to shocks are a central feature of most interesting new-Keynesian
equilibria. In some sense we knew this from reading: Clarida, Gali and Gertler (2000)
and Woodford (2003, Ch4) calculate the variance of output and inflation using rules with
no intercepts, and discuss the merits of larger ¢ for reducing such variance, while all the
time equilibria with zero variance of output or inflation are sitting under our noses, as in
Woodford’s “Wicksellian” policies and the no-gap equilibrium y; — ¥, above, if only we
will allow the policy rule to depend on disturbances directly.

Why can’t the same equilibrium be achieved with a rule that responds only to variables
and not to disturbances? After all, endogenous variables are functions of disturbances
(that’s the whole point of finding an equilibrium), so why can’t we substitute out for
disturbances in terms of endogenous variables and get rid of the stochastic intercept?
The central problem in making this substitution is that the relationships between interest
rates, output, and inflation in typical equilibria of the new-Keynesian model do not
lie in the determinacy region. In order to generate these equilibria as unique locally-
bounded equilibria, we are forced, as above, to imagine that the central bank responds
more strongly to inflation or output that deviates from the equilibrium values than it
responds to variation in equilibrium output or interest rates, which is equivalent to a
stochastic intercept.

As the simplest example, suppose our equilibrium results in a constant nominal interest
rate, ¢ = 7, which means
iy =1+ 0 X 7.
Obviously, the latter expression, ¢, = 0, does not lie in the region of determinacy. To

generate this equilibrium as a unique locally-determinate outcome, we have to write the
policy rule with a stochastic intercept

i = (7+¢w7:) +¢ﬂ' (ﬂ—t _ﬂ—:)

In the simple model of Section 2.1, as in any model with constant real interest rates,
the Fisher relation
i =1+ Emiy (33)

means that we always see in equilibrium a coefficient of exactly one on expected future
inflation. Again, to generate any equilibrium in such a model as the unique locally-
bounded equilibrium, we will have to add a stochastic intercept,

Z;:k =T + Etﬂ—:_i,-l ‘I— (;51 (Etﬂ—t-‘rl — Etﬂ-;;_l) .
In the three-equation model, (14)-(15) give
Ly =T+ p (EtytJrl - yt) + By + p (34)

If there is no disturbance x4, we once again cannot write the equilibrium without a
stochastic intercept. Coefficients ¢, ; =1, ¢, o = —¢,; also generate an eigenvalue of
exactly one (see (47) below). Our only hope is to include 24 and hope that when we
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substitute out for x4 in terms of observables y and 7, that the resulting relation lies in
the determinacy region.

Now, equilibria y; are in general driven by current and expected future values of the

disturbances,
y; = Eyla(F)xg +b(F)xg + c(F)g];  Fry = x4 (35)

To keep the algebra manageable, I consider a simple example,
Y, = ays + bTnp + cTas. (36)

Can we generate this equilibrium from an interest rate rule with a constant intercept and
no loading on disturbances? Inflation is, substituting (36) into (12),

= BEm =y (a—1) T + (1 +90) 2y + cyza (37)

The real interest rate is not observable, and our objective is to substitute out the distur-
bances in the nominal interest rate equation. Thus, we have to find z4 for equation (34)
in terms of observables y; and 7; from (36) and (37).

Alas, this cannot be done: we have two equations and three disturbances. Thus,
even this simple equilibrium of the standard three-equation model can’t be implemented
without a stochastic intercept. More generally, the plan to recover disturbances from
observable variables cannot always be accomplished; there may be too many disturbances
or the functional forms may not be invertible.

To proceed, we will have to restrict the model some more. I assume y; is constant
through time and a = 1. (More generally, many authors use estimates of “potential
output” to treat g, as observable.) I also set b =0, as adding b # 0 does not change the
character of the example®. Now the example has specialized to

*

Yo —Y=Clar (38)
Ty — BEm = T + cyTa (39)
We can at last solve (38)-(39) for the disturbances x.; and x4,
cxa = (y; — 7).
Substituting into the interest rate equation (34),
1

- 1 * — * * *
w=rt (i =)+ o (Eeytin = v7) + Bl (40

3With b # 0, we obtain
cxar = (1+b) (y; —9) = b(m} — BEmy,,).

1y =71+ oo (i —9) + p (Etyt-H - yt) + By — e (”t - ﬁEtWt-H)

and the determinacy condition is
_a-pa+m)
ocy

1 1

)

which again can hold or not depending on b and c.
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Now, we have it, a policy rule in standard form without a shifting intercept. (If we
start with the more general (35), we end up with many leads and lags of output and
inflation, not just the conventional ¢ and ¢+ 1 terms.) The remaining question is, are these
coefficients in the region of determinacy? Evaluating the basic determinacy condition,
shown in (47) below, we need

1-p1

v oc

1— > 1.

This condition can go either way. With the usual signs g € (0,1), v > 0, 0 > 0, if a value
of ¢ > 0 means the condition is violated, then ¢ < 0 means that it holds. So, the point
is made: some equilibria can be supported by a locally-deterministic Taylor rule with a
nonstochastic intercept, i.e., with no direct loading on disturbances, and some cannot.
The assumption of a fixed intercept, or that the interest rate rule away from equilibrium
is the same as that in equilibrium, restricts the set of achievable equilibria.

Granted that we are ruling out equilibria, are we ruling out interesting equilibria? This
is not a question I can answer in great generality, but many interesting equilibria of this
model cannot be achieved as unique locally determinate outcomes without a stochastic
intercept. The y; = 7, “no-gap” equilibrium is one. If just before (38) we examine instead
the special case

* —

Yy = U

then (37) becomes
7y — BEm L = bTn.

This system does not allow us to back out z4 in (34). (We can also view y; = 7; as a
limiting case that requires infinite ¢ parameters.) The equilibrium with constant inflation
is another example. From (12) such an equilibrium can be achieved with

B 1
Yt = Yt — —Tpt.
Y

Equation (37) now just reads
T — BEm, =0

so once again we cannot find x4 for in (34) from observables.

More generally, Woodford’s (2003) discussion of optimal policies leads to the “neo-
Wicksellian” conclusion that policy must respond directly to disturbances, i.e. with a
stochastic intercept. When we rule out such policies, we are in effect assuming that the
central bank is not following optimal policies of this sort.

To empirical policy rules

Models also allow the central bank to respond to output, and to every other endogenous
variable. This helps to connect with the data — interest rate regressions seem to have
output coefficients — and responses to additional variables can bring us closer to optimal
policies that respond to structural disturbances, as above. Both theory and empirical work
also favor interest rate smoothing, which is another way of saying that lags of output and
inflation should be in the rule.
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These thoughts leave us with specifications of the form

it = %+ pil‘t,1 + -~-¢7|—7_17th1 + ¢N7O7Tt + ¢7T71Et7rt+1 + ... (41)
+&y 1Y—1 + Gy oYt + Oy 1 By + oo+ xa

where I have used ... to indicate that more leads and lags may be added. Both theory and
empirical work allow all endogenous variables to enter the policy rule. Optimal policy of
course responds, in general, to everything available.

The error term includes genuine monetary policy disturbances as well as the left-out
disturbances from the stochastic intercept. We certainly want to allow for such monetary
policy disturbances, just as we allow for disturbances to preferences and technology of
the other agents, if for no other reason than theories that predict 100% R? can quickly be
rejected.

Monetary policy disturbances most likely represent left-out variables. At a funda-
mental level, the Federal reserve never announces “and then we flipped a coin and added
50 basis points for the fun of it.” It always explains policy as a response to something
— perhaps a momentary concern with exchange rates, or (as I write) with conditions in
credit markets. This source of disturbances is at least serially correlated, and also likely
to be correlated with the right hand variables such as inflation and output. Time-varying
rules are often cited as a source of error, but they really are the same thing, since some
variable caused the rule to shift. And even a genuine, exogenously-changing rule will lead
to serially correlated error. Rudebush (2005) examines Fed Funds futures data to argue
that persistence in Taylor rule shocks is due to persistent omitted variables, and not to
partial adjustment to shocks.

Summary

In sum, new-Keynesian models specify policy rules that are a snake-pit for econometri-
cians. The right hand variables are endogenous. As in the simple model above in which 7,
jumps in response to the error x;, many of the right hand variables are predicted to jump
when there is an innovation to the error term, generating strong correlations. There
is a time-varying intercept, which will be hard to distinguish from an error term, and
which is also correlated with right hand variables since both are functions of underlying
disturbances in equilibrium. The time-varying intercept and the true monetary policy
disturbance z;; are serially correlated, making the use of lags as instruments invalid.

3.2 Clardia, Gali and Gertler

Clarida Gali and Gertler (2000) specify an empirical policy rule in partial adjustment
form, as (in my notation)

i = (L= py— po) {1+ (05 = 1) [Er (me11) — 7] + &, By [Aypia] } + priv—y + poi—2 (42)
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where

7 = inflation target
Ay1 = growth in output gap
r = “long run equilibrium real rate”

(See (4) p. 153 and Table II p. 157.) What are the important identification assumptions?

First, there is mo error term, no monetary policy disturbance at all. The central
problem of my simple example is that any monetary policy disturbance is correlated with
right hand variables, since the latter must jump endogenously when there is a monetary
policy disturbance. Clarida, Gali, and Gertler assume this problem away.

An error term appears if we replace expected inflation and output with their ex-post
realized values, writing

Qv = (L=py—po) {1+ (¢r — 1) [e41 — 7] + O, AU } + priv—1 + pois—s +ep1. (43)

In this way, Clarida, Gali, and Gertler do not make the prediction of 100% R? that would
normally come from assuming away the policy disturbance. The remaining error £,,4 is a
pure forecast error, so it is serially uncorrelated. This fact allows Clarida, Galf and Gertler
to estimate the model by instrumental variables observed at time ¢ to remove correlation
between ;.1 and the ex-post values of the right hand variables 7,1 and Ay;yq.

Second, the time-varying intercept is gone as well. Such an intercept would also
look like a serially correlated error term, correlated with right hand variables in this
single-equation estimation. As above, the absence of a time-varying intercept is a strong
identifying restriction, with strong implications for model dynamics.

Clarida, Gali and Gertler (1998) consider a slightly more general specification that
does include a monetary policy disturbance?. In this case, they specify (their equation
2.5, my notation)

iy = (1—p) [Oé + OB (Tt 440|) + ¢, B (31 — gt|Qt)} + pig—1 + vy (44)

where ¢ denotes potential output, separately measured, and §2; is the central bank’s
information set at time ¢. wv; is now the monetary policy disturbance, defined as “an
exogenous random shock to the interest rate. 7 They add, “Importantly, we assume that
vy is 1.i.d.” They estimate (44) by instrumental variables, using lagged output, inflation,
interest rates, and commodity prices as instruments.

The assumption that the disturbance v; is unpredictable from any variable in the
central bank’s information set is the key to identification in this case. Clarida Gali and
Gertler assume the central bank does not observe current output ;. Actual output y,
jumps when v; is revealed. In the new-Keynesian model, the error term represents the
time-varying intercept and the other variables that the Fed may look at, so of course
assuming an i.i.d. error is a very strong restriction.

4Curiously, Clarida Gali and Gertler (2000) mention the disturbance v; below their equation (3), p.
153, but does not appear in the equations or the following discussion. I presume the mention of v; is a
typo in the 2000 paper.
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3.3 Giannoni, Rotemberg, Woodford

Rotemberg and Woodford (1997, 1998, 1999), followed by Giannoni and Woodford (2005)
(see also the summary in Woodford 2003, Ch. 5) follow a different identification strategy,
which allows them to estimate the parameters of the Taylor rule by OLS regressions.
Giannoni and Woodford (2005 p. 36-37) nicely lay out the form of the Taylor rule in
these papers:

We assume that the recent U.S. monetary policy can be described by the
following feedback rule for the Federal funds rate

n Naw N Ty
I = 7‘*‘2 ¢ik(it7k_7)+z ¢wkwt—k+z %k(ﬂt—k—ﬁ)"‘z Gy Yi-rter (45)
k=1 k=0 k=0 k=0

where i; is the Federal funds rate in period ¢; ¢, denotes the rate of inflation
between periods ¢t — 1 and ¢; w; is the deviation of the log real wage from trend
at date t, Y is the deviation of log real GDP from trend, 7 and 7 are long-
run average values of the respective variables. The disturbances ¢; represent
monetary policy “shocks” and are assumed to be serially uncorrelated. ...To
identify the monetary policy shocks and estimate the coefficients in [(45)], we
assume ... that a monetary policy shock at date ¢ has no effect on inflation,
output or the real wage in that period. It follows that [(45)] can be estimated
by OLS...(p.36-37)

Since they lay out the assumptions that identify this policy rule with such clarity,
we can easily examine their plausibility. First, they assume that the monetary policy
disturbance ¢; is i.i.d. — uncorrelated with lags of itself and past values of the right hand
variables. This is again a strong assumption, given that ¢, is not a forecast error, but
instead represents a stochastic intercept, responding to structural disturbances in the
economy, and other endogenous variables that the Fed may respond to.

Second, Giannoni, Rotemberg, and Woodford assume that the disturbance &; is also
not correlated with contemporaneous values of w;, m; and f/t This is a common empirical
assumption, but it is an especially surprising result of a new-Keynesian model, because in
Wy, Ty Y, are endogenous variables. From the very simplest model in this paper, endogenous
variables have jumped when there is a monetary policy (or any other) disturbance. The
whole point of new-Keynesian, forward-looking solutions is that endogenous variables
jump, so that disturbances do not lead to hyperinflations. To achieve this result, Giannoni,
Rotemberg and Woodford assume as part of their economic model that w;, 7, f/; must be
predetermined by at least one quarter, so they cannot move when &, moves. (In the
model as described in the Technical Appendix, output Y is actually fixed two quarters in
advance, and the marginal utility of consumption g, is also fixed one quarter in advance.
These additional lags help to produce realistic dynamics in the predicted impulse-response
functions.) Needless to say, while logically consistent, this is an even stronger assumption.
Are wages, prices, and output really fixed one to two quarters in advance in our economy,
and therefore unable to react within the quarter to monetary policy disturbances?
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Finally, if wy, 7 Y, do not jump when there is a monetary policy disturbance, some-
thing else must jump, to head off the explosive equilibria. What does jump in this model
are expectations of future values of these variables, among others w1 = Fyy1, 71 =
Eymyyq, and YHg = Etf/Hg as well as the state variable E/, ,; (marginal utility of consump-
tion). All of these variables are determined at date t. Now, we see another assumption
in the policy function (45) — none of these future variables are present in the policy rule.
In contrast to the vast literature that argues for the empirical necessity and theoretical
desirability of Taylor rules that react to expected future output and inflation, and to other
variables that the central bank can observe, that reaction is absent here.

In sum, Giannoni and Woodford identify the Taylor rule in their model, by virtue of
classic a-priori identifying assumptions. There are two assumptions about Fed behavior: 1)
The disturbance and time-varying component of the intercept are not serially correlated,
or predictable by any variables at time ¢ — 1, and 2) The Fed does not react to expected
future output, or wage, price inflation, or other state variables. There is an assumption
about the economy: 3) Wages, prices, and output are fixed a period in advance.

4 System identification

Identifying parameters by estimating the whole system is a promising possibility, es-
pecially if one feels uncomfortable at the strong assumptions that need to be made for
the above single-equation methods. We write down a complete model, we find dynamics
of the observable variables, and we figure out if there are or are not multiple structural
parameters corresponding to each possible set of equilibrium dynamics. Exploiting the
full predictions of the model offers greater hope for identification. It also offers the only
way to really check determinacy. The eigenvalues of new-Keynesian models are almost
always complex functions of many structural parameters, not just those of the policy rule.
There is now an exploding literature on estimating fully-specified new-Keynesian models.
I review the major contributions, and then I study the identification possibilities in a
three-equation model.

4.1 Flavors of identification

Identification comes in several flavors, and it’s worth being explicit about them so we
know what we’re looking for. Denote the set of parameters by €. This includes structural
parameters (3,7, o), policy-rule parameters (¢) and parameters describing the evolution
of disturbances (p). There is also a set of observables, which I denote B. In the model I
will study below, the observable implications of the model are completely summarized by
the VAR transition matrix for output, inflation, and interest rates, so B represents this
matrix.

1. General identification. The strongest possible form of identification occurs if there
is a one-to-one mapping between # and B. Then you know that no matter how the
empirical exercise turns out (estimation of B), you are guaranteed to know the structural
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parameters uniquely. Often, identification occurs not completely in general but except for
measure zero sets of parameters. For example, most of the identification I present below
relies on two disturbances having different AR(1) coefficients.

2. Identification given a particular estimate. Weaker forms of identification suffice
for many purposes. We are often not interested in arbitrary observables B. Often, we
are only interested in one particular estimate, for example the transition matrix B* that
comes from a particular data set. It is enough to say that we we have uniquely measured
the parameters if there is only one 6% corresponding to this B*. A unique 6 for each B
near B* is also interesting for distributional questions. Rejection regions can expand if
there are many 6 corresponding to some B that are statistically near B*, even if there is
only one 0" corresponding to an estimate B* itself.

2a. Local identification at a particular estimate. Even restricting attention to one
particular B*, there is a weak and a strong form of identification. A set of parameters 6*
is locally identified if there is no other set of parameters ¢ within a small neighborhood
of 6" that produce the same B*. This case is important, because it’s easy to check for
in estimation, even when models must be solved numerically. We need simply to check
that the matrix dvec[(B(6))] /df' has the same rank as the number of parameters in 6.
Equivalently, when estimation results from minimizing an objective, we can check that
the matrix of second derivatives of the objective function with respect to parameters is
full rank.

2b. Global identification at a particular estimate. We are particularly concerned with
a somewhat stronger kind of identification. Often, a set of parameters is locally identified
(at least we know the author’s computer programs converged and did not report a singular
Hessian), and the parameters are well inside the region of determinacy. We want to know,
though, is there a set of parameters far away from these parameters, in the region of
indeterminacy, that produces the same B*? A derivative test will not tell us the answer to
this question. For example, suppose the observable implications of a model with parameter
0 could be wrapped up in the autoregression of a single observable y;, of the form

Y = 92%—1 + &

Given a measurement of the autoregression coefficient, the parameter 6 is locally identified.
However, § = —0* would work just as well.

5. Identification of regions. For determinacy questions, less information may suffice.
A parameter may not be either globally or locally identified; there may be a large set
of 6* that have the same implications for B*. To test for determinacy, it is sufficient to
uniquely identify all the structural parameters, but it is not necessary. If we can show that
the entire set of #* consistent with the given B* lies in the region of determinacy, then we
can identify determinacy without identifying all the parameters. Lubik and Schorfheide
(2004), reviewed below, investigate this kind of identification.

6. Reasonable identification. Finally, we may have many parameters that produce the
same dynamics B*, and some of these may in the region of indeterminacy. However, we
may feel that the parameters that violate indeterminacy are unreasonable, either from
a-priori economic reasoning or other considerations.
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7. Weak identification. We often say parameters are “weakly identified” when, though
there is a one-to-one correspondence between ¢ and B at or near B*, very small changes
in B imply very large changes in 6.

4.2 Identification in current estimates
4.2.1 Rotemberg, Giannoni and Woodford

Rotemberg and Woodford (1997, 1998, 1999) and Giannoni and Woodford (2005) go
on from OLS estimation of the policy rule (45) to estimate structural parameters. They
solve the full model, and search for parameters that come closest to matching the response
functions of the endogenous variables to the monetary policy shock.

In the most extensive identification discussion, Rotemberg and Woodford (1998) report
(p. 21) that in fact the remaining structural parameters are not separately identified

In fact, one can show that only four combination of the structural parame-
ters can be identified from the impulse responses to a monetary policy shock,
given a particular feedback rule for the monetary policy. The parameters 3, k
and o are each identified, but only a single function of w and v is, rather than
either of these being identified independently.

Their response is to fix a-priori the remaining parameters (k,o and ¥ , p. 24) a-priori
and only estimate three parameters. (They use the word “calibrate” and refer to other
studies, but if this is the model of the world, then the other studies can’t identify them
either.)

4.2.2 Ireland

Ireland (2007) is an excellent recent example of a full-system approach. It is estimated
by maximum likelihood, so in this sense we know that Ireland exploits all the information
the data has about his model.

Ireland specifies a policy rule (his Equation (7), p.9, in my notation)

it = i1+ Qr (e — 7)) + 0, (Ay — Ay) + v
Vi = PyU—1 T OpEut

T, = T, — 0pEet — 0,Ex + OnEpy
gt 1s the “cost push shock” and €., is the “technology shock” that appear in the supply
or Phillips-curve equations.

This is a much more general policy rule than studied so far: it includes a serially
correlated disturbance vy, and through 7} it contains a “stochastic intercept,” linked to
the disturbances to other equations of the model. It is clearly hopeless to estimate such

24



a rule by single-equation methods. However, by estimating an entire system we can hope
to measure the shocks such as g9 and ¢, that enter the stochastic intercept of the policy
rule, and to distinguish them from the monetary policy disturbance e,;. By estimating
the dynamics of the entire model, we can hope to identify ¢, and ¢, despite the evident
correlation between 7, Ay, and v;.

For given parameter values, Ireland solves the complete model as I have outlined in
section 2.4 above. With a full law of motion for observables, he can construct the likelihood
function and maximize it. Ireland’s approach is implemented in the DYNARE® package
of computer programs.

There is a global and a local identification issue 1: What does the model solution al-
gorithm do when we want to evaluate parameters that generate insufficient (or overabun-
dant) eigenvalues greater than one, i.e. a region of indeterminacy? 2: Are the structural
parameters locally identified, i.e. given that we are in the interior of a region in which we
have just enough eigenvalues greater than one, can one identify all the parameters or just
a subset of them?

In Ireland’s case, the first answer is that the estimate is constrained to lie in the region
of local determinacy. Ireland subtracts a very large number from the log-likelihood for any
parameter set that leads to local indeterminacy, and does not attempt to solve the model
for such parameters. Thus, we don’t know if other parameters, in the indeterminacy
region, can give the same dynamics. Ireland’s estimate also displays symptoms of local
lack of identification, that several parameters must be imposed a-priori. On p. 13, Ireland
finds analytically that 6 (Dixit-Stiglitz elasticity of substitution) and ¢ (price adjustment
cost) are not separately identified, so only the composite parameter ¢» = (0 — 1)/¢.
One of ¢ or # must be calibrated. On p. 15, Ireland finds that the estimates of v are
unreasonable, so he calibrates that as well®. He also shows that is basically impossible to
distinguish econometrically between two versions of the model that provide very different
interpretations of postwar US monetary history.

4.2.3 Smets and Wouters

Smets and Wouters (2003) is an early and influential full-model estimates. Computer
programs implementing their approach are also available on the DYNARE website, so we
are likely to seem many more estimates following their approach. They solve an extended
new-Keynesian model, fit to European data.

As a common sign of local identification problems, they fix several parameters a-priori,
including the discount factor 3, the depreciation rate, the power on capital in the Cobb-
Douglas production function, and the “parameter capturing the markup in wage setting
as this parameter is not identified” (p., 1141)

Smets and Wouters take a Bayesian approach, specifying priors for the other para-
meters. Most interesting, from our perspective, are the parameters of the policy rule.

Shttp:/ /www.cepremap.cnrs.fr/dynare/
50n both issues, I thank Peter Irealnd for showing me how the estimates work.
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The prior for the inflation coefficient is normal with a mean of 1.70 and a standard error
of 0.10 (their Table 1). If we sample from a priors seven standard deviations from the
boundary for indeterminacy, the chance of drawing an indeterminate parameter (¢ < 1)
is ®(—7) = 1.3 x 107'2. This calculation is just suggestive, of course. Smets and Wouters’
policy function responds to the output gap, and to changes in inflation and output gap,
and determinacy is a property of the whole model. Still, it is quite likely that Smets
and Wouters’ simulation never even asked about parameters in the indeterminacy region.
Even if it did, multiplying by priors on the order of 1.3 x 107!2, it’s clear that they do
not address the question “could the same observational implications be generated by a
different set of parameters in the indeterminacy region?”

The difference between prior and posterior is a measure of how much the data have
to say about a parameter. Tellingly, the prior and posterior for the inflation response of
monetary policy ¢, are nearly identical (Figure 1C p. 1147), and the estimate is 1.68
relative to a prior mean of 1.70, suggesting that the policy rule parameters are at best
weakly identified, even in a local sense.

Ontaski and Williams (2004) examine the Smets-Wouters model in detail. They
find that changing priors affects the structural parameter estimates substantially. They
also find numerous local minima. They report “although our parameter estimates differ
greatly, the implied time series of the output gap that we find nearly matches that in SW
and the qualitative features of many of the impulse responses are similar.” They call this
“over-parameterized,” which is the same as “underidentified.” Most interestingly for my
quest, when they substitute a uniform prior between 1 and 4 on the inflation coefficient

in monetary policy ¢, (Table 1) for Smets and Wouters’ tight normal, their estimate is
the upper bound 4.00 (Table 3).

4.2.4 Summary

From reading, then, we don’t know much about whether the current generation of new-
Keynesian model estimates is identified. We have some indications of weak local identi-
fication. But we don’t know much at all about my central question, whether there are
parameters from the indeterminacy region that give the same predictions for observables.
Most computer programs for solving new-Keynesian models will not produce solutions if
there are insufficient or excessive eigenvalues greater than one, so this question is typically
not even asked.

This is not a criticism of the authors. They are not interested in testing for determi-
nacy, or Clarida, Gali, and Gertler’s (2000) question whether the Federal reserve moved
from a ‘indeterminate” regime in before 1980 to a “determinate” one after that. More
broadly, they are not interested in testing the new-Keynesian model. They are interested
in matching dynamics of output, inflation, and other variables, by elaboration of the basic
model, imposing determinacy where there is any question, and making arbitrary choices
of parameters when those are weakly identified. In the effort to match dynamics, these are
natural and harmless simplifications. Lack of identification is, as expressed by Ontaski
and Williams (2004), almost a feature not a bug, as it means the model’s ability to match
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dynamics is “robust.” The models are and meticulously specified and long and hard, so I
do not mean to criticize them by saying they should have asked additional questions.

The question remains, though: Are parameters identified in the full-system approach?
This certainly becomes an important question when we move past matching dynamics
to welfare calculations and optimal-policy calculations. Parameters that are not identi-
fied or weakly identified can have vastly different welfare consequences. What kinds of
assumptions must we make to identify parameters, and those assumptions reasonable?
Can the full-system approaches escape the non-identification theorems I outlined above?
In particular, can we identify enough parameters to infer that the “unstable” eigenvalues
are in fact large enough, so a full-system estimate might be able to document a shift
from an indeterminate to a determinate regime more convincingly than a single-equation
estimate?

4.3 Identification in three-equation models

The Rotemberg-Woodford, Giannoni-Woodford, Smets-Wouters and Ireland models are
large, complex, and must be solved numerically. Analytically characterizing identification
and determinacy in these models is an algebraic nightmare, and it is doubtful results of
any generality would emerge. Therefore, I turn to an expanded three-equation model
that is just simple enough to be analytically tractable, yet complex enough to illustrate
interesting and nontrivial possibilities.

I consider a fairly general case of the standard three-equation model:

it = ¢7r,07Tt + ¢7r,1Et7rt+1 + ¢y,0yt + ¢y,1Etyt+l + Xy + nyyt + efr'rﬂ't

Yo = B — 0 (ip — ) + ay
T = BEm1 + Y+ T

Tit = Pi%i—1 1 Eit

Tyt = PyTi—1 + Eyt

Trt = Prlyt—1 T Ent

Comments on specification

To specify this model, I have introduced three disturbances. We need at least three dis-
turbances to break stochastic singularities between the three observable variables v, 7, ;.
Identification can be purchased by such singularities, but not very convincingly. For ex-
ample, if we write a policy rule i; = ¢, 7, then we will certainly be able to identify ¢,
but we will also predict an easily-rejectable 100% R? in the policy-rule regression. On the
other hand, three disturbances can be a restrictive assumption. King’s (2000) model (10)-
(12) has two disturbances in the Phillips curve, a separate potential output g, as well as a
disturbance z,;, which I have merged into one. Limiting the model to three disturbances
allows us to recover disturbances from the three observable variables, which is convenient
but not necessarily realistic. Thus, to the extent that we obtain identification, sensitivity
to additional disturbances is obviously a concern.
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I specify AR(1) processes for the disturbances. This too is a restrictive assumption.
It means that current values of the disturbances x; will be state variables. Additional
dynamics in the disturbances act exactly like additional disturbances, giving a system with
more state variables. My review of Lubik and Schorfheide (2004) below finds that their
identification comes only from restricting the disturbance process, so any identification
found here really needs to be checked in the same direction. Most of my point, however,
is a cautionary tale about how identification can be lost, and these are simply more
possibilities for that point which I do not explore.

I allow a serially correlated disturbance z;; in the policy rule (46). I also allow the
disturbances to enter the policy rule, as my above discussion suggests they should, and
as Ireland (2007) does. I allow the standard responses to current and expected future
inflation and to current and expected future output.

The system (46)-(46) results in an AR(1) representation for observable variables

Yt+1 Yt Eyt+1
Tl =B Tt +C Ext+1 (46)
L1 2 Eut+1

I allow arbitrary cross-correlation among the shocks £;, so no implications flow from the
C matrix of observables. Everything the model predicts about data is captured in the
transition dynamics of the B matrix.

The B matrix has 9 elements, so at best we can hope to identify 9 parameters. We
have 6 structural parameters, 3, v, o, p;; py, pr, and 6 policy rule parameters ¢, o, ¢, 1,
Gy.0s Py1s Oy, Ox so we know ahead of time that they can’t all be identified. However,
the exercise is still not trivial: We will be able to see what is and what is not identified;
how some special cases achieve identification, and how generalizing assumptions removes
some of those identification possibilities. For example, it’s possible that the policy rule
parameters are all identified, and some structural parameters are not identified, or vice
versa. It’s possible that the specific combinations of policy rule parameters required
to establish local determinacy are identified even if the individual parameters are not
identified. It’s possible that by “calibrating” the structural parameters, we can identify
all the policy parameters and establish determinacy. We can only answer these sorts of
questions by solving the model.

Solving the model

I proceed exactly as in the simple example of the last section. I relegate the tedious
algebra to the appendix. I write (46)-(46) in the standard form, (27). The eigenvalues of
the transition matrix are p;, p,, p, and

A= <bi N 4ac>

2a
where
a = 6 (1 - U¢y,1)
b = 1+8+0y(1—¢p1) +0B0,0— 09,

c = 1+ 0@5%0 + J’ygbmo
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The condition ||A|| > 1 gives rise to a complicated region of determinacy, characterized in
the appendix. (Cochrane 2007 also plots some subsets of the determinacy region.) One
simple and commonly-studied boundary occurs with o¢, ; # 1, real roots b — 4ac > 0,
and the case A = 1 (rather than A = —1). In this case, the determinacy condition is

1—
(¢7r,0 + ¢7r,1) - % (%,1 + ¢y,0) > 1. (47)

In the first term, we see the “Taylor principle” that inflation coefficients sum to more
than one. However, the second term shows that output responses can substitute for
inflation responses. In fact, determinacy can be achieved with no inflation response at
all, if the output response is strong enough. Thus, to see if the system lies in this well-
studied boundary, we will need to consider all of the ¢ coefficients as well as the structural
parameters (3 — 1) /7.

The equilibrium dynamics of the observables can be described by

Zy = 0Z;_ 1+ €

where
pi 00
o=10 p, 0
0 0 p
and then observables follow
Yt
T | = Qz,.

it

With three equations and three AR(1) disturbances, we can recover the disturbances
from the observables. The z variables and their shocks are just scaled versions of the x
disturbances and their shocks,

iz = —0Ty
ayzy = (L—oby)zy
OpZyt = —Tgt
where
ai = (1=p) 1 =pB) + 07 (bno+pi (0r1 — 1)) + (1= Bp;) (by0 + piby1)
Qy = (1 o py) (1 o pyﬁ) + oy ((bmo + Py ((bﬂ,l - 1)) +o (1 - pr) (¢y,0 + py¢y,1)
Qr = (1 - pﬂ') (1 - pwﬂ) + a7y (¢7‘(’,0 + Pr (¢7r,1 - 1)) +o (1 - 6p7r) (¢y,0 + p7r¢y,1)

We can equivalently write the VAR representation (46) of the observables as

Yi Yt—1
| =QeQ ! | m1 | + Qe (48)
i lt—1

29



The columns of the Q matrix are

1—Bp;
Q:,l - i (49)
i — 2 (1—p;) (1= p;)
1= pp,
R (o o) onles (50
=00y | 47 (¢r0 + PyPr1) + (1= Bp,) (Dy0 + Pyy1)
O-pEr +o (]; - 6p7r> ‘971' - (O- (¢7r,0 + p7r¢7)r,1)
_ L—pg) +0v0: +0(Dy0+ PrPya
Q= { 10 — (1= p,) (1= p.B)] 0 } (51)
+ (]' - pﬂ) (¢7r,0 + 107r¢ﬂ',1) + Pr0O (¢y,0 + p7r¢y,l)

Now, we can summarize everything the data has to say about parameters of this model
by the 9 elements of the VAR transition matrix B = QoQ™". (See (46) and (48)). We can
also first eigenvalue-decompose B, and summarize everything the data has to say about
parameters by the 3 eigenvectors and 6 independent elements of the eigenvector matrix.
The latter approach is clearly easier algebraically. If these expressions for the eigenvector
matrix Q seem complex, try inverting Q! In this VAR system, Qij,oé‘? gives the response
of variable i to a shock k at the k£ horizon. Thus, by studying the elements of Q we are
also studying what the impulse-response function can tell us about system parameters.

In sum, then, our identification question is this: Given p and Q matrices, corresponding
to a set of parameters p*, 5%, ~v*, o*, ¢, 0", are there other parameters p, 53,7, 0, ¢,0 that
generate the same Q7

What’s identified?

1. The persistence parameters p;, p,,p, and all the structural parameters of the econ-
omy [,7,0 are identified. The three persistence parameters are easily identified from the
eigenvalues of the VAR transition matrix B. Taking ratios of the first and second rows,
the top left block Qu.2,1.2 lets us identify (1 — fp;) /v and (1 — Bp,) /7. Since we know p;
and p,, and presuming they are different, we can separately identify 5 and . Q31 now
contains only the unknown o, so ¢ is now identified. (Global identification in this system
requires ruling out special cases such as p; = p,, and I will not take up space listing the
special cases.)

If we only study responses to the monetary policy disturbance x;;, we only see the first
column of Q, i.e., (49). That column allows us to identify (1 — Sp;) /v, but not 8 and
7 separately. Giannoni and Woodford (2005) and Rotemberg and Woodford (1999) were
similarly only able to identify certain combinations of structural parameters, but not the
individual parameters. Here, we could fix 3 a-priori as they do, and then estimate v and
o. However, by examining the response to both monetary policy shocks and demand (y)
shocks, we can in this system estimate [, v and o separately. This result suggests that
the Rotemberg-Woodford model’s limited identification of structural parameters did not
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result from the determinacy/indeterminacy issues I study, and could be easily fixed by
examining more responses. This sort of result is a nice argument in favor of a full-system
approach to identification and estimation.

2. The response to the monetary policy shock Q.1 contains no information about the
parameters of monetary policy ¢ and 6. Sensibly, perhaps, to have any hope of identifying
monetary policy, we must examine how the economy, including the central bank, responds
to other shocks.

3. Knowledge of the structural parameters 3,0,, p;, pr, p, would not help to identify
the policy rule parameters ¢, 6. One might think, based on counting parameters and the 9
degrees of freedom, that “calibrating” some of the structural parameters to sensible values
would leave more degrees of freedom for identifying policy rule parameters. However, the p
are identified from the eigenvalues of the transition matrix, and 3, o, v are identified from
the first column and first two rows of the second column of Q, and these do not contain
policy parameters anywhere. Hence, the identification of policy parameters cannot be
helped by better knowledge of structural parameters.

Policy parameters and determinacy

Now, we can move on to the policy parameters ¢ and 6. Q32 (50) and the third column
Q.3 (51) contain all of our information about policy parameters. However, these elements
of Q are all linear functions of the parameters ¢ and 6, and Qg3 is a linear combination
of Qi3 and Qo3: —2(1 — p,)Qu31 + px Q23 = Qs3. Thus, all our information about the
¢ and 6 parameters comes down to two restrictions,

[(L=p,) (1 =Bp,) =070, Oy + 7 (Pro + Py&ra) + (1 = Bpy) (S0 + Pyya) _ Qs

v (1 —0o0,) Q22
(52)
(1= po) + 00+ 0 (S0 P20y1)  Qus (53)

OpPr +o (1 - 5/07r) 97" -0 (¢7r70 + 107r¢7r,1) N Q2,3.

4. If we know ¢, we can measure 6. Note that only 6, enters (52), derived from the
responses to the z, disturbance, and only 6, enters (53), derived from the responses to
the z, disturbance. Thus, the most natural interpretation of these equations is this: If we
somehow know the ¢ parameters, then (52)-(53) allow us to measure the  parameters.
If we know how the central bank would respond to the endogenous variables — precisely
the determinacy question (the 6 do not enter (47) or any other determinacy conditions)
— then we we could measure how the central bank responds to shocks.

However, what we’re after is to see how the ¢ parameters might be identified, or at
least seem to be identified. With 2 linear equations and 6 unknowns, we’re obviously
not going to identify everything. But, if we fix some parameters a-priori we can identify
others.

5. If we set 0, = 0 and 0, = 0, then we can identify any two of ¢, g, Pr1,Pyor Py1-
Most empirical specifications assume away policy responses to shocks, so this is an inter-
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esting case to examine. Equations (52)-(53) become

YV (bno+ Pybrn) + (L= Bp,) (b0 + py8y1) = v%
%O‘ (¢7r,0 + /07r¢7r,1) +0o (¢y,0 + p7r¢y,1) = O-pﬂ'% o (1 o '077)
2.3 2,3

Setting any two ¢ to zero, we retain a linearly independent system (except, as usual for
peculiar parameter sets such as p, = py.) For example, we could identify responses to
current output and inflation, ¢, , and ¢, o; or we could identify inflation responses ¢,
and ¢, ;.

This is a remarkable result, worth highlighting. The policy rule does have a disturbance
Zi, and that disturbance is serially correlated, and correlated with the other shocks in the
economy. The right hand variables of the Taylor rule can move contemporaneously and so
are correlated with its disturbance. The policy rule cannot be estimated by single-equation
methods. Yet if we restrict the policy rule to a two-parameter form, for example,

it = QroTt + Q1 EaTe1 + T g (54)

then we can identify both ¢, , and ¢, ; by examining the dynamics of the whole system.
The presence of the all three shocks is key to this identification.

6. We cannot identify ¢, nor can we identify whether the system is determinate, if we
allow the standard four responses ¢, o, ¢ 1,9, 0, 1. The two linear equations (54) and
(54) obviously can’t separately identify all four of ¢, o, ¢, 1,®,, ¢, - In particular, the
apparently attractive identification of (54) falls apart if we allow any output responses

¢y,0 or (by,l-

Perhaps, however, the set of observationally-equivalent ¢ parameter do not range to
far, so if we start with a parameter set ¢* well inside the region of determinacy, all the
alternative possibilities also lie in that region? Alas, this hope is dashed as well. Equations
(54)-(54) are linear, so unidentified parameters can range over the whole real line.

The only hope is that the two linear combinations of ¢ that (54)-(54) allow us to
identify are also the linear combinations we have to test, as in (47). Alas, they are
different, in a revealing way. We can see from (54)-(54) that the linear combinations we
can identify are weighted by persistence parameters such as p,, p,. These parameters do
not appear in determinacy conditions. (The explicit expression for the identified linear
combinations of ¢ is not pretty or revealing, so I relegate it to the appendix.)

In sum, even without bringing up responses to disturbances 6, i.e. “stochastic inter-
cepts,” if we allow the possibility that the central bank responds to the standard current
and expected future output and inflation, we cannot identify that the system is determi-
nate.

7. We cannot identify any of the ¢ responses if we allow policy to respond to shocks,
0= # 0 and 0, # 0. Any identification of policy-rule parameters necessary for determinacy
must come by assuming away policy responses to disturbances. This result is clear by
simple inspection of (54)-(54). Even if we restrict the policy rule as much as possible, say

32



by only allowing ¢, 4 # 0, we still cannot identify three parameters with these two linear
equations. In particular, different possibilities for the # imply different, observationally-
equivalent values of ¢.

Perhaps we can identify whether the system lies in the region of determinacy, even if
we cannot identify the parameters? Again, that hope fails: (54)-(54) are linear restrictions
on ¢, so as we vary 0, and 0., ¢ varies over the whole real line.

Perhaps escaping the region of determinacy requires economically implausible para-
meters? To answer this question, I express Q as a function of an initial set of parameters
¢", 0", and I express (54)-(54) in terms of deviations from those parameters. To keep the
algebra relatively simple, I present the case in which we only consider ¢, 4 # 0, i.e., [ start
at a given ¢ , I'set ¢, | = 0,9, , =0,¢,, = 0,0, = 0,0, =0, and I consider variation
only in ¢, g, 0r,0,. (The monstrous formula for the general case is in the Appendix)

In this example, the observationally-equivalent changes ;bn,o = Gro — Dros 0, =0, —

0y, 0y = 0, — 0, obey

0 = [ov¢50+ (L—p,) (L=Bp,) — ovp,] Oy + ¥,
0 = [07¢;,0 + (]' - prr) (1 - Bpﬂ') - O-,ypﬂ':| éﬂ - (]' - pﬂ') &STK‘,O

So, suppose we start with ¢, , = 2, well inside the region of determinacy ¢, > 1.
How much 6, and 6, do we need to assume to find an indeterminate ¢, , < 1 that is
observationally equivalent? Using 0 = 1,7 = 1,8 = 0.95, p, = p, = 0.7, ¢ ; = 2, we have

0 = 140 x 0, + ¢,
0 = 1.40 x 0, — 0.3 X ¢, 0.

Thus, to reduce ¢, , by one, we need to decrease 6, by 1/1.4 = 0.71 and we need to
increase 0, by 0.3/1.4 = 0.21. 6, and 6, capture how much the interest rate responds to
shocks to output y and inflation 7, so they have the same units as ¢, and ¢,. These are
therefore quite sensible values. And, of course, smaller values are needed if one can also
look over the range of ¢, 1,0, ,¢,, as well.

Summary

The full-system approach starts with great promise: by fully exploiting all the predic-
tions of the model, we may be able to identify parameters or combinations that single-
equation methods cannot identify. And, some of that promise is fulfilled: in this example,
the full-system approach can identify all the structural parameters 3,7, o, p. If we assume
away policy response to shocks 0, = 0, = 0, and only allow two responses to inflation
and output, then we can also identify the policy rule parameters, even though there is
a serially-correlated policy disturbance, correlated with the right hand variables of the
policy equation.

Alas, the policy-rule identification, and identification of determinacy, falls apart if the
central bank follows even slightly generalized rules. If we allow the standard four response
coefficients ¢, o, O, 1, Py 0, P, 1, then we cannot identify the parameters individually, nor
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if the system is in the determinate region. For example, estimates of ¢, , and ¢, ; in
the determinacy region are observationally equivalent to estimates that include ¢, , #
0, ¢, 1 # 0 for which the system is not determinate. Allowing policy to respond directly to
the shocks in “Wicksellian” fashion removes all hope of identifying the policy parameters
¢ on which determinacy rests. Allowing more disturbances or more general stochastic
processes for those disturbances can only make matters worse.

5 Lubik and Schorfheide; Testing regions

Lubik and Schorfheide (2004) test for determinacy vs. indeterminacy in the simple model
I presented above. They try to identify the region — determinacy vs. indeterminacy
— without having to measure specific parameters. Alas, their identification comes from
restrictions on the lag length of the unobservable shocks. (Beyer and Farmer (2006),
reviewed below, make this point with a series of examples.)

Lubik and Schorfheide explain their ideas in the same single-equation setup as I use
above, simplifying even further by assuming a white noise monetary policy disturbance

Ty =€
(i.e., p =0). The equilibrium is characterized again by (4) which becomes
Eimig = ome + &4,
The solutions are, generically,
Tyl = Oy + €4+ 0411

where d,,1 represents the inflation forecast error. If ¢ > 1, the unique locally-bounded
solution is
&t
Ty = ——.

¢

If ¢ < 1, then any d,,1 with E;d,,1 = 0 gives rise to a locally-bounded equilibrium.

Lubik and Schorfheide agree that ¢ is not identified when ¢ > 1. For example, the
likelihoods in their Figure 1 are flat functions of ¢ for the region ¢ > 1. However, they
still claim to be able to test for determinacy — to distinguish the ¢ > 1 and ¢ < 1 regions.
The essence of their test is a claim that the model with indeterminacy ¢ < 1 can produce
time-series patterns that the model with determinacy cannot produce.

They explain the result with this simple example. Since d;; is arbitrary, it does no
harm to restrict 0,11 = Me; 1 with M an arbitrary parameter. In this example, then, the
(local or bounded) solutions are

€t
o > Lim=——
¢
¢ < Lim=0¢mg+e1+ Mgy
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Thus, if ¢ > 1, the model can only produce white noise inflation 7;. If ¢ < 1, the model
produces an ARMA (1,1) in which ¢ is identified as the AR root. Thus, if you saw
an ARMA(1,1), you would know you're in the region of indeterminacy. They go on to
construct a likelihood ratio test for determinacy vs. indeterminacy.

Alas, this identification is achieved only by restricting the nature of the shock process
xy. If the shock process x; is not white noise, than the ¢ > 1 solution can display
complex dynamics in general, and an ARMA(1,1) in particular. Since the shock process
is unobserved, we cannot in fact tell even the region ¢ > 1 from the region ¢ < 1. I can
sum up this point in a proposition:

Proposition: For any stationary time-series process for {i;, m}, and for any ¢, one
can construct an x; process that generates the given process for the observables {i;,m:} .
If ¢ > 1, the observables are generated as the unique bounded forward-looking solution.
In either case, given the process m = a(L)e; we construct xy = b(L)e; with

bj = aji1 — bay, (55)
or, in lag operator notation,

b(L) = (L™" —¢)a(L) —a(0)L " (56)

In particular, any observed time series process for {i;, m;} that is consistent with a
¢ < 1 model is also consistent with a different é > 1 model. Thus, absent restrictions on
the unobserved forcing process {x;} , there is no way to tell the regime with determinacy
from the regime with indeterminacy. Equivalently, the joint set of parameters including
¢ and the parameters of the x; process are unidentified; one can only identify some of
these parameters, e.g. ¢ < 1 vs. ¢ > 1, by fixing others, e.g., the parameters of z;.

Proof. Start with any process for inflation 7, = a(L)e;. Choose an arbi-
trary ¢ > 1. Then, we construct a disturbance process x; = b(L)e; so that the

forward-looking equilibrium with arbitrary ¢ > 1 generates the the desired
time-series process for inflation, i.e., so that Equation (5) holds,

1 1
Ty = G(L)gt = _Et Z Fl’prj = _Et Z —b(L)€t+j

It’s easy enough to check that (55) is correct:

—b( Etyj = Etz WH Z Qf4+1 — ¢ak) Etti—k

o0

_Etz

<
Il
o
2.
;

KCLl — ¢a0) Et —+ (CLQ — gbal) Et—1 + (CL3 — QﬁCLQ) Et—2 —+ ]

=

(a2 — ¢ar) er + (a3 — daz) -1 + (as — pas) er—o + .|

& = oy

[(a3 — daz) &y + (a1 — pas) e,-1 + (a5 — dpag) g2 + ..] + ...
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= g€t + A1E¢4_1 + A2E4_2 + ...

The derivation of (55)-(56) takes a bit more algebra. I use the Hansen and
Sargent (1980) formulas for the moving average representation of an expected
discounted value. I present the derivation in the Appendix.

If we choose a ¢ < 1, then the construction is even easier. The solutions
to (4) are

Tl = QT + Ty + Opp1,

where d; is an arbitrary unforecastable shock. To construct an x; we need
therefore

(1—=¢L)my1 = @+ 0
(1 —oL)a(L)ery1 = b(L)er + et

Obviously, forecast errors must be equated, so we must have 6,11 = apeii1.
Then,

(1 — gbL)CL(L)gt_H = b(L)gt + ap€it1
(1-6L)a(L) = ao+ Lb(L),

and (56) follows.
iy is just given by i; = r + F; (m41), and so adds nothing once we match 7
dynamics.

Example: Suppose we generate data from the Lubik-Schorfheide example with ¢ < 1,
i.e. x; = & is i.i.d., and therefore m; follows the ARMA(1,1) process (55),

Ty = ¢7Tt71 + Mét + &1 = (1 — ¢L)_1 <M+ L) Et.

We can generate exactly the same solution from a model with arbitrary &5 > 1 if we let the
policy disturbance x; be an ARMA(1,1) rather than restrict it to be white noise. Using
(56), we choose x; = b(L)e; with

b(L) = <L*1 - ;ﬁ) (1—¢L) " (M+L)— LM
or, multiplying by (1 — ¢L~") and simplifying,
(1-¢L)z, = :(L‘l - (}5) (M+L)— (1—¢L)L™'M]| &,
(1— L)z = :(1+ (¢—&)) M) —&L} e,
—ora = |1+ (9 0) M|e - des

i.e., z; follows an ARMA (1,1).

36



6 Taylor on Taylor rules

A natural question is, “how does Taylor think Taylor rules work?” The best instance I
can find to answer this question is Taylor (1999). Taylor adopts a “simple model” (p.
662, in my notation)

gy = —o(iy—m—71)+u
My = M1+ VY—1+ €
it = T+ QT+ O Yt

This is a classic “old-Keynesian model,” in that all the forward-looking terms are absent.
(The companion paper, Cochrane 2007 discusses it a bit more fully.) As a result, ¢, > 1
is the condition for stable dynamics, in which we solve for endogenous variables as a
function of past shocks. Formally, with 7 = r, the standard form of the model is

o 1—¢, o 1—¢ 1 o 1-¢,
Yo | _ | 91500, %1700, Y=t | L | THoo, 7500, U (57)
Tt y 1 -1 0 1 €t
The eigenvalues of the transition matrix are
1-¢
M=1+o0 T X=0.
1 Y 110 be 2

¢, > 1 and ¢, > 0 generate A\; less than one, so we solve for y;, m; as a function of past
shocks.

Identification in Taylor’s model is similar to identification in familiar “old-Keynesian”
models, as reviewed by Sims (1980). It’s easy if we restrict the stochastic process of the
disturbances. For instance, if we assume u; and e; are unpredictable from time ¢ — 1
information, then we can simply run a first-order VAR and recover o,, ¢, ¢, from the
VAR regression coefficients in (57). If we do not make any assumptions about error
terms, identification is more difficult, as we cannot easily separate disturbance dynamics
from model dynamics. However, this is an old and familiar issue (Sims (1980)), having
nothing to do with multiple equilibria.

Unsurprisingly, identification of parameters depends on the model that those para-
meters describe. The theorem is not “the policy rule parameters are unidentified,” but
“Parameters crucial to determinacy are unidentified in new-Keynesian models.”

7 Related literature

The papers closest to this one are Beyer and Farmer (2004, 2006). Beyer and Farmer
(2006) compare an “indeterminate” AR(1) model

pr = aEy (prs1)
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with [|a|| < 1 to a “determinate” AR(2),

pe = aEy (pry1) + bpe—1 + v

where they choose a and b so that one root is stable and the other unstable. Both models
have AR(1) representations, so there is no way to tell them apart. They conjecture
based on this result that Lubik and Schorfheide (2004) attain identification by lag length
restrictions.

Beyer and Farmer (2004) compute solutions to the three equation new-Keynesian
model. They note (p 24) that the equilibrium dynamics are the same for any value of
the Fed’s Taylor Rule coefficient on inflation, as long as that coefficient is greater than
one. Thus, they see that the Taylor Rule coefficient is not identified by the equilibrium
dynamics. They examine the model

Uy = Etut+1 + 0.005 ('lt — Et7Tt+1) —0.0015 + V1t
T = 0'97Et7rt+1 — 05Ut + 0.0256 + Vo
it = 1-1Et7Tt+1 + 0.028 + V3¢

where v;; are i.i.d. shocks. They compute the equilibrium dynamics (“reduced form”) as

Ug 0.05 1 0 0.05 V1
m | =1002 |+ =051 —-0.25 vy | - (58)
1t 0.05 0 O 1 Ust
They state that “all policies of the form
it = — f3o By [Ti41] + 3 + v3t,
for which
| f32| >1

lead to exactly the same reduced form..as long as c¢3 and f33 are chosen to preserve the
same steady state interest rate.” They don’t state whether this is an analytical result or
simply the result of trying a lot of values; since the computation of (58) is numerical, one
suspects the latter.

Davig and Leeper (2005) calculate an economy in which the Taylor rule stochastically
shifts between “active” ¢ > 1 and “passive” ¢ < 1 states. They show that the system can
display a unique locally-bounded solution even though one of the regimes is “passive.”
Intuitively, we can rule out a value of inflation if at some date in the future it will lead
to an explosion, even if it does not lead to an explosion under the current regime. Even
if one could identify and measure the parameters of the Taylor rule, this model argues
against the stylized history that the US moved from “passive” and hence “indeterminate”
monetary policy in the 70s to an “active” and hence “determinate” policy in the 1980s.
So long as agents understood some chance of moving to an “active” policy, inflation was
already “determinate” in the 1970s.

Woodford (2003) also notices the identification problem. On p.93, he discusses Taylor’s
(1999) and Clarida, Gali and Gertler’s (2000) regression evidence that the Fed responded
less than 1-1 to inflation after 1980 and more than 1-1 afterwards. He writes
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Of course, such an interpretation depends on an assumption that the
interest-rate regressions of these authors correctly identify the character of
systematic monetary policy during the period. In fact, an estimated reaction
function of this kind could easily be misspecified.

An example in which the measured ¢ coefficient is 1/2 of the true value follows.
However, though Woodford sees the possibility of a bias in the estimated coefficients, he
does not say that the structural parameter ¢ is unidentified.

Minford, Perugini and Srinivasan (2001, 2002) address a related but different iden-
tification point: does a Taylor-rule regression of interest rates on output and inflation
establish that the Fed is in fact following a Taylor rule? The answer is no: Even if the
Fed targets the money stock there will be variation of nominal interest rates, output and
inflation in equilibrium, so we will see a “Taylor rule” type relation. As output rises or
inflation rises with a fixed money stock, money demand rises, so equilibrium interest rates
must rise. As a very simple explicit example, consider a constant money supply equal to
money demand,

m’ - = ay— Py

mé = m

In equilibrium, we see a Taylor-like relation between nominal interest rates, output and
the price level

= ——m° + g + l

(2 5m 5yt 5pt
This is an important point: just because the central bank says it is following an inflation
target, and just because its short run operating instrument is obviously an interest rate
does not by itself document that the central bank is not paying attention to a monetary
aggregate, or that price level determinacy does not in the end really come from such a
target.

8 Conclusions and implications

My main motivation for looking at identification in new-Keynesian models is to assess a
central empirical success: estimates such as Clarida, Gali and Gertler’s (2000) that say
inflation was stabilized in the U.S. by a switch from an “indeterminate” to a “determi-
nate” regime. My main point, in this context, is that this important historical episode
is misinterpreted. We cannot, through new-Keynesian Taylor-rule glasses, read either re-
gressions or full-model estimates as evidence that the US moved from an “indeterminate”
regime in the 1970s to a “determinate” regime thereafter. And even if we did, a theory
that has absolutely nothing to say about inflation in the 1970s, other than “inflation is
indeterminate, so any value can happen” is surely a bit lacking. Beyond this motiva-
tion, however, the analysis reveals a more generally unsettling lack of identification in the
empirical implementation of new-Keynesian models.
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Clarida, Gali, and Gertler not only find coefficients greater than one, they find co-
efficients a lot greater than one, as do most authors who run such regressions. Their
coefficients range from a baseline 2.15 (Table IV) to as much as 3.13 (Table V). These
coefficients imply that if the US returned to 12% inflation (a 10 percentage point rise), the
Federal reserve would raise the Federal Funds rate to a value between 5.25+21.5 = 26.75%
and 5.25 4 31.3 = 36.55%, implying astronomical real rates. If these predictions seem im-
plausibly large, even for the current inflation-oriented Federal Reserve, then digesting
them as something less than structural helps a great deal.

The identification issue stems from the heart of all new-Keynesian models, which is
the need to specify explosive dynamics in order to rule out multiple equilibria, the latter
generated by the fact that the model only determines expectations of future variables. Yet
the dynamics of equilibrium variables are by nature stationary, i.e. “locally-bounded,” so
cannot possibly reveal such explosions.

This fact means that endogenous variables must jump in response to disturbances.
Alas such jumps mean that right hand variables of a policy rule must jump when there
is a monetary policy disturbance, so that equation will be exquisitely hard to estimate.
One can only get around this central prediction by strong and arbitrary assumptions, in
particular that the central bank does not respond to many variables.

In this paper, I take the new-Keynesian modeling rules as given to ask about identifica-
tion. In particular, I do not question the restriction to the unique locally-bounded equilib-
rium. A companion paper, Cochrane (2007), argues that as a matter of theory, there is no
economic reason to ignore nominally-explosive equilibria. Thus, the equilibrium-selection
device that causes all the trouble is invalid anyway, and we might as well stop dreaming
up unobservable behavior to exploit it.
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