Impact of Higher Order Beliefs Talk for the 2005 Nemmers Prize Conference

Stephen Morris Yale University

May 5, 2005

– Typeset by $\mbox{FoilT}_{\!E\!X}$ –

Outline

- "Global Games" and Higher Order Beliefs
- Bounded Rationality
- Taking Harsanyi Seriously
- Strategic versus Structural Uncertainty
- Experiments

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_{E\!X}$ –

Common Knowledge of Rationality and Payoffs

	Invest	Not Invest
Invest	heta, heta	$\theta - 1, 0$
Not Invest	$0, \theta - 1$	0, 0

- Common Knowledge that $\theta > 1$, "invest" is dominant strategy
- Common Knowledge that $\theta < 0$, "not invest" is dominant strategy
- Common Knowledge that $\theta \in [0,1]$, both actions are fully rational

Common Knowledge of Rationality, Not Payoffs

- A Harsanyi-Mertens-Zamir type describes beliefs about θ , beliefs about θ and opponent's beliefs about θ ,...
- Necessary conditions for "Invest" to be rationalizable for *i*:

1.
$$E_i(\theta) \ge 0$$
.
2. $E_i(\theta) \ge 1 - \Pr_i(E_j(\theta) \ge 0)$
3. $E_i(\theta) \ge 1 - \Pr_i(E_j(\theta) \ge 1 - \Pr_j(E_i(\theta) \ge 0))$
4.

- $\widehat{B}_I(A) = \{t_i : E_i(\theta|t_i) \ge 1 \Pr_i(t_j \in A|t_i)\}$
- Invest is rationalizable at $\widehat{B}_{I}^{\infty}\left(\Omega\right)$

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Nemmers

- $\widehat{B}_N(A) = \{t_i : E_i(\theta|t_i) \le \Pr_i(t_j \in A|t_i)\}$
- Not Invest is rationalizable at $\widehat{B}_{N}^{\infty}\left(\Omega\right)$

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Asymmetric Information I

- $\theta \sim U(\mathbb{R})$
- $x_i = \theta + \varepsilon_i$
- $\varepsilon_i \sim N\left(0, \frac{1}{\beta}\right)$
- Unique equilibrium
- Natural comparative statics in more complicated coordination games
- As in electronic mail game, no event is common p-belief for $p > \frac{1}{2}$:

[–] Typeset by FoilT $_{\!E\!X}$ –

Nemmers

- Individual observing
$$x_1$$
 thinks $\theta \sim N\left(x_1, \frac{1}{\beta}\right)$
- Prob $\left(\theta \leq \theta^* | x_1\right) = \Phi\left(\sqrt{\beta}\left(\theta^* - x_1\right)\right)$

$$[B_1^p]\left(\{(\theta, x_1, x_2) : \theta \le \theta^*\}\right) = \left\{(\theta, x_1, x_2) : x_1 \le \theta^* - \frac{1}{\sqrt{\beta}}\Phi^{-1}(p)\right\}$$

- Individual observing
$$x_1$$
 thinks $x_2 \sim N\left(x_1, \frac{2}{\beta}\right)$
- Prob $(\theta \le \theta^* | x_1) = \Phi\left(\sqrt{\frac{\beta}{2}}\left(\theta^* - x_1\right)\right)$

– Typeset by FoilT $_{E\!X}$ –

$$B_1^p\left(\{(\theta, x_1, x_2) : x_2 \le x^*\}\right) = \left\{(\theta, x_1, x_2) : x_1 \le x^* - \frac{\sqrt{2}}{\sqrt{\beta}}\Phi^{-1}(p)\right\}$$

$$[B_*^p]^k \left(\{ (\theta, x_1, x_2) : \theta \le \theta^* \} \right) \\ = \left\{ (\theta, x_1, x_2) : x_i \le \theta^* - \frac{1 + (k - 1)\sqrt{2}}{\sqrt{\beta}} \Phi^{-1}(p) \right\}$$

Asymmetric Information II

- $\theta \sim N\left(y, \frac{1}{\alpha}\right)$
- $x_i = \theta + \varepsilon_i$
- $\varepsilon_i \sim N\left(0, \frac{1}{\beta}\right)$
- Uniqueness if

$$\frac{\alpha^2}{\beta} \left(\frac{\alpha + \beta}{\alpha + 2\beta} \right) \le 2\pi$$

Alternate Uniqueness Conditions

• Let

$$\overline{\theta}_{i}(t_{i}) = E_{i}(\theta|t_{i})$$

$$p_{i}(t_{i}) = \Pr_{i}\left\{\overline{\theta}_{j}(t_{j}) \geq \overline{\theta}_{i}(t_{i}) | t_{i}\right\}$$

- Common Knowledge that $p_1 = p_2 = \frac{1}{2} \Rightarrow$ type t_i invests if and only if $\overline{\theta}_i(t_i) > \frac{1}{2}$.
- Common Knowledge that $\alpha \leq p_i \leq 1 \alpha \Rightarrow$ type t_i invests if $\overline{\theta}_i(t_i) > 1 \alpha$ and does not invest if $\overline{\theta}_i(t_i) < \alpha$

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Modelling

- Leamer (1985): "it is indeed a frightful sight to observe economists tiptoeing into the edges of the quagmire of philosophy"
- Rubinstein (1991): models as players' perception of reality
- Two approaches:
 - 1. Bounded Rationality
 - 2. Full Rationality:
 - Model endogeneity of asymmetric information.
 - What does the universal type space really look like?

[–] Typeset by FoilT $_{\!E\!X}$ –

Bounded Rationality

- "As if common knowledge"
- "Common knowledge if high number of levels of knowledge": Rubinstein (1989)
- "Confidence" take risky but high expected value action only if there is high "confidence" that returns are high
 - confidence = common p-belief?
- Act as if common knowledge that $p_1 = p_2 = \frac{1}{2}$
 - Jehiel and Koessler (2004)... "analogy-based expectation equilibrium"

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

- Reducing dimension of tyspe favors uniqueness results
- "Strategic uncertainty:" act as if exogenous uncertainty about others' behavior

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Full Rationality

- What do types in the universal type space look like? Are funny looking type spaces (the email game, Carlsson-van Damme) more representative of the universal type space than "nice" type spaces?
- Morris (2002), Dekel, Fudenberg and Morris (2005)
 - 1. "Strategic" metric topology: two types are close if they have same ε -rationalizable actions in all games
 - 2. "Finite" types are dense in strategic topology, but not category 1

Strategic versus Structural Uncertainty

- \bullet In our global game, behave as if 50/50 probability distribution over opponent's action
- More generally, "Laplacian" beliefs over opponents' actions in global game

-
$$I = [0, 1], \ \theta \sim g(\cdot), \ x_i = \theta + \sigma \varepsilon_i, \ E_i(\# \{j : x_j \le c\} |x_i|) \approx c \text{ for small } \sigma$$

- are global games just about introducing strategic uncertainty?
- general modelling question: repeated games, reputation, etc...

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

- Is there a meaningful distinction between strategic and structural uncertainty?
 - complete information
 - purification
 - with rich higher order beliefs, distinction goes away?
 - * intuition: can always use tails of higher order beliefs to proxy for "strategic uncertainty"
 - * formalization: Weinstein/Yildiz show you do not need to add payoffirrelevant types to support rationalizable play on universal type space.

Experiments

- Beauty contest experiments and levels of beliefs
- Coordination Games
 - With complete information, behave as if strategic uncertainty
 - Heinemann, Nagel and Ockenfels (2004)
- Measuring "Publicness"
 - Chaudhuri, Schotter and Sopher (2001)

Conclusions

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

- Higher order beliefs seems to matter
- Applied economists are adept at finding tools to tame higher order beliefs (in the name or tractability)
- Useful to develop tractable models where higher order beliefs matter
- Must think about how to interpret those models.